The seismic capacity curves of three types of buildings including frame,frame-shear wall and shear wall ob- tained by pushover analysis under different lateral load patterns are compared with those from nonlinear time...The seismic capacity curves of three types of buildings including frame,frame-shear wall and shear wall ob- tained by pushover analysis under different lateral load patterns are compared with those from nonlinear time history analy- sis.Based on the numerical results obtained a two-phase load pattern:an inverted triangle(first mode)load pattern until the base shear force reaches β times its maximum value,V_(max)followed by a(x/H)~α form,here β and α being some coeffi- cients depending on the type of the structures considered,is proposed in the paper,which can provide excellent approxima- tion of the seismic capacity curve for low-to-mid-rise shear type buildings.Furthermore,it is shown both the two-phase load pattern proposed and the invariant uniform pattern can be used for low-to-mid-rise shear-bending type and low-rise bending type of buildings.No suitable load patterns have been found for high-rise buildings.展开更多
Based on the concept of stiffness degradation, a damage index of the whole frame and the storey is proposed for the frame seismic performance evaluation. The index is compatible with the non-linear static analysis (e...Based on the concept of stiffness degradation, a damage index of the whole frame and the storey is proposed for the frame seismic performance evaluation. The index is compatible with the non-linear static analysis (e. g. the pushover analysis), and the structural damage is considered via plastic hinges. Simultaneously, a practical approach is developed to obtain the relationships between the proposed index and earthquake intensities based on the capacity spectrum method. The proposed index is then illustrated through two low-rise reinforced concrete frames, and it is also compared with some other indices. The results indicate that the proposed index is on the safe side and not sensitive to the lateral load pattern. The storey index is helpful to reflect the storey damage and to uncover the position of the weak storey. Finally, the relationship between performance levels and damage index values is also proposed through statistical analysis for the performance-based seismic evaluation.展开更多
文摘The seismic capacity curves of three types of buildings including frame,frame-shear wall and shear wall ob- tained by pushover analysis under different lateral load patterns are compared with those from nonlinear time history analy- sis.Based on the numerical results obtained a two-phase load pattern:an inverted triangle(first mode)load pattern until the base shear force reaches β times its maximum value,V_(max)followed by a(x/H)~α form,here β and α being some coeffi- cients depending on the type of the structures considered,is proposed in the paper,which can provide excellent approxima- tion of the seismic capacity curve for low-to-mid-rise shear type buildings.Furthermore,it is shown both the two-phase load pattern proposed and the invariant uniform pattern can be used for low-to-mid-rise shear-bending type and low-rise bending type of buildings.No suitable load patterns have been found for high-rise buildings.
基金The National Basic Research Program of China(973 Program)(No.2007CB714200)
文摘Based on the concept of stiffness degradation, a damage index of the whole frame and the storey is proposed for the frame seismic performance evaluation. The index is compatible with the non-linear static analysis (e. g. the pushover analysis), and the structural damage is considered via plastic hinges. Simultaneously, a practical approach is developed to obtain the relationships between the proposed index and earthquake intensities based on the capacity spectrum method. The proposed index is then illustrated through two low-rise reinforced concrete frames, and it is also compared with some other indices. The results indicate that the proposed index is on the safe side and not sensitive to the lateral load pattern. The storey index is helpful to reflect the storey damage and to uncover the position of the weak storey. Finally, the relationship between performance levels and damage index values is also proposed through statistical analysis for the performance-based seismic evaluation.