Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were...Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were used to measure soil moisture dynamics using an array of time domain reflectometry(TDR) together with overland flow and subsurface flow using isolated collecting troughs.Frequency of preferential flow during rainfall events and the controls of subsurface flow processes were investigated through combined analysis of soil properties,topography,rainfall intensity,initial wetness,and tillage.Results showed that subsurface flow was ubiquitous in purple soil profiles due to welldeveloped macropores,especially in surface soils while frequency of preferential flow occurrence was very low(only 2 cases in plot C) during all 22 rainfall events.Dry antecedent moisture conditions promoted the occurrence of preferential flow.However,consecutive real-time monitoring of soil moisture at different depths and various slope positions implied the possible occurrence of multiple subsurface lateral flows during intensive storms.Rainfall intensity,tillage operation,and soil properties were recognized as main controls of subsurface flow in the study area,which allows the optimization of management practices for alleviating adverse environmental effects of subsurface flow in the region.展开更多
To improve soil carbon sequestration capacity,the full soil carbon cycle process needs to be understood and quantified.It is essential to evaluate whether water erosion acts as a net source or sink of atmospheric CO_(...To improve soil carbon sequestration capacity,the full soil carbon cycle process needs to be understood and quantified.It is essential to evaluate whether water erosion acts as a net source or sink of atmospheric CO_(2)at the basin scale,which encompasses the entire hydrological process.This study introduced an approach that combined a spatially distributed sediment delivery model and biogeochemical model to estimate the lateral and vertical carbon fluxes by water erosion at the basin scale.Applying this coupling model to the Dongting Lake Basin,the results showed that the annual average amount of soil erosion during 1980-2020 was 1.33×10^(8)t,displaying a decreasing trend followed by a slight increase.Only 12% of the soil organic carbon displacement was ultimately lost in the riverine systems,and the rest was deposited downhill within the basin.The average lateral soil organic carbon loss induced by erosion was 8.86×10^(11)g C in 1980 and 1.50×10^(11)g C in 2020,with a decline rate of 83%.A net land sink for atmospheric CO_(2)of 5.54×1011g C a^(-1)occurred during erosion,primarily through sediment burial and dynamic replacement.However,ecological restoration projects and tillage practice policies are still significant in reducing erosion,which could improve the capacity of the carbon sink for recovery beyond the rate of horizontal carbon removal.Moreover,our model enables the spatial explicit simulation of erosion-induced carbon fluxes using costeffective and easily accessible input data across large spatial scales and long timeframes.Consequently,it offers a valuable tool for predicting the interactions between carbon dynamics,land use changes,and future climate.展开更多
Metro shield tunnels under the lateral relaxation of soil(LRS)are susceptible to significant lateral deformations,which jeopardizes the structural safety and waterproofing.However,deformation control standards for suc...Metro shield tunnels under the lateral relaxation of soil(LRS)are susceptible to significant lateral deformations,which jeopardizes the structural safety and waterproofing.However,deformation control standards for such situations have not been clearly defined.Therefore,based on a specific case,a model test is conducted to realize the LRS of a shield tunnel in a sandy stratum to reveal its effect on segment liners.Subsequently,a deformation control criterion is established.The LRS is simulated by linearly reducing the loads applied to the lateral sides of the segment structure.During lateral unloading,the lateral earth pressure coefficient on the segment decreases almost exponentially,and the structural deformation is characterized by horizontal expansion at the arch haunches and vertical shrinkage at the arch vault and arch bottom.Based on the mechanical pattern of the segment structure and the acoustic emission,the deformation response of a segment can be classified into three stages:elastic and quasi-elastic,damage,and rapid deformation development.For a shield tunnel with a diameter of approximately 6 m and under the lateral relaxation of sandy soil,when the ellipticity of the segment is less than 2.71%,reinforcement measures are not required.However,the segment deformation must be controlled when the ellipticity is 2.71%to 3.12%;in this regard,an ellipticity of 3%can be used as a benchmark in similar engineering projects.展开更多
基金by the Natural Science Foundation of China (Grant No. 40801101)
文摘Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were used to measure soil moisture dynamics using an array of time domain reflectometry(TDR) together with overland flow and subsurface flow using isolated collecting troughs.Frequency of preferential flow during rainfall events and the controls of subsurface flow processes were investigated through combined analysis of soil properties,topography,rainfall intensity,initial wetness,and tillage.Results showed that subsurface flow was ubiquitous in purple soil profiles due to welldeveloped macropores,especially in surface soils while frequency of preferential flow occurrence was very low(only 2 cases in plot C) during all 22 rainfall events.Dry antecedent moisture conditions promoted the occurrence of preferential flow.However,consecutive real-time monitoring of soil moisture at different depths and various slope positions implied the possible occurrence of multiple subsurface lateral flows during intensive storms.Rainfall intensity,tillage operation,and soil properties were recognized as main controls of subsurface flow in the study area,which allows the optimization of management practices for alleviating adverse environmental effects of subsurface flow in the region.
基金supported by the National Natural Science Foundation of China(Grant No.U19A2047)the Natural Science Foundation of Hunan Province(Grant No.2023JJ20030)。
文摘To improve soil carbon sequestration capacity,the full soil carbon cycle process needs to be understood and quantified.It is essential to evaluate whether water erosion acts as a net source or sink of atmospheric CO_(2)at the basin scale,which encompasses the entire hydrological process.This study introduced an approach that combined a spatially distributed sediment delivery model and biogeochemical model to estimate the lateral and vertical carbon fluxes by water erosion at the basin scale.Applying this coupling model to the Dongting Lake Basin,the results showed that the annual average amount of soil erosion during 1980-2020 was 1.33×10^(8)t,displaying a decreasing trend followed by a slight increase.Only 12% of the soil organic carbon displacement was ultimately lost in the riverine systems,and the rest was deposited downhill within the basin.The average lateral soil organic carbon loss induced by erosion was 8.86×10^(11)g C in 1980 and 1.50×10^(11)g C in 2020,with a decline rate of 83%.A net land sink for atmospheric CO_(2)of 5.54×1011g C a^(-1)occurred during erosion,primarily through sediment burial and dynamic replacement.However,ecological restoration projects and tillage practice policies are still significant in reducing erosion,which could improve the capacity of the carbon sink for recovery beyond the rate of horizontal carbon removal.Moreover,our model enables the spatial explicit simulation of erosion-induced carbon fluxes using costeffective and easily accessible input data across large spatial scales and long timeframes.Consequently,it offers a valuable tool for predicting the interactions between carbon dynamics,land use changes,and future climate.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.52178398,51991394,and 51278424).
文摘Metro shield tunnels under the lateral relaxation of soil(LRS)are susceptible to significant lateral deformations,which jeopardizes the structural safety and waterproofing.However,deformation control standards for such situations have not been clearly defined.Therefore,based on a specific case,a model test is conducted to realize the LRS of a shield tunnel in a sandy stratum to reveal its effect on segment liners.Subsequently,a deformation control criterion is established.The LRS is simulated by linearly reducing the loads applied to the lateral sides of the segment structure.During lateral unloading,the lateral earth pressure coefficient on the segment decreases almost exponentially,and the structural deformation is characterized by horizontal expansion at the arch haunches and vertical shrinkage at the arch vault and arch bottom.Based on the mechanical pattern of the segment structure and the acoustic emission,the deformation response of a segment can be classified into three stages:elastic and quasi-elastic,damage,and rapid deformation development.For a shield tunnel with a diameter of approximately 6 m and under the lateral relaxation of sandy soil,when the ellipticity of the segment is less than 2.71%,reinforcement measures are not required.However,the segment deformation must be controlled when the ellipticity is 2.71%to 3.12%;in this regard,an ellipticity of 3%can be used as a benchmark in similar engineering projects.