For virtually realizing the graphic realism display of DXF machine parts, in AutoCAD2007 graphic drawing environment, an interactive experimental method was taken to realize the display of graphic in DXF, which was ta...For virtually realizing the graphic realism display of DXF machine parts, in AutoCAD2007 graphic drawing environment, an interactive experimental method was taken to realize the display of graphic in DXF, which was taken as the data-exchanged interface and source. Based on depth analysis of DXF data structure, take one drawing of DXF lathe turning rotational part asthe test piece. By VC++6.0 programming, part's geometry information could be obtained. Through data processing, 3D data of the test piece could be generated, which is based on 2D data of DXF test piece. Then, OpenGL graphic processing technologies (light, material, texture, map, et al.) were applied on the 3D display of test piece from DXF files or program modules. Finally based on the test report, results of the system functions were shared to prove the realization of system design, and the feasibility of algorithms used. In the developed software, Machine Designers could get a full view of machine parts, and do some proper modifications. The study content and results of our work have some theory and practical significance on the application of program design in the practical projects.展开更多
The vibration disturbance from an external environment affects the machining accuracy of ultra-precision machining equipment.Most active vibration-isolation systems(AVIS)have been developed based on static loads.When ...The vibration disturbance from an external environment affects the machining accuracy of ultra-precision machining equipment.Most active vibration-isolation systems(AVIS)have been developed based on static loads.When a vibration-isolation load changes dynamically during ultra-precision turning lathe machining,the system parameters change,and the efficiency of the active vibration-isolation system based on the traditional control strategy deteriorates.To solve this problem,this paper proposes a vibration-isolation control strategy based on a genetic algorithm-back propagation neural network-PID control(GA-BP-PID),which can automatically adjust the control parameters according to the machining conditions.Vibration-isolation simulations and experiments based on passive vibration isolation,a PID algorithm,and the GA-BP-PID algorithm under dynamic load machining conditions were conducted.The experimental results demonstrated that the active vibration-isolation control strategy designed in this study could effectively attenuate vibration disturbances in the external environment under dynamic load conditions.This design is reasonable and feasible.展开更多
文摘For virtually realizing the graphic realism display of DXF machine parts, in AutoCAD2007 graphic drawing environment, an interactive experimental method was taken to realize the display of graphic in DXF, which was taken as the data-exchanged interface and source. Based on depth analysis of DXF data structure, take one drawing of DXF lathe turning rotational part asthe test piece. By VC++6.0 programming, part's geometry information could be obtained. Through data processing, 3D data of the test piece could be generated, which is based on 2D data of DXF test piece. Then, OpenGL graphic processing technologies (light, material, texture, map, et al.) were applied on the 3D display of test piece from DXF files or program modules. Finally based on the test report, results of the system functions were shared to prove the realization of system design, and the feasibility of algorithms used. In the developed software, Machine Designers could get a full view of machine parts, and do some proper modifications. The study content and results of our work have some theory and practical significance on the application of program design in the practical projects.
基金supported by the National Natural Science Foundation of China(Grant Nos.62073184,52105490).
文摘The vibration disturbance from an external environment affects the machining accuracy of ultra-precision machining equipment.Most active vibration-isolation systems(AVIS)have been developed based on static loads.When a vibration-isolation load changes dynamically during ultra-precision turning lathe machining,the system parameters change,and the efficiency of the active vibration-isolation system based on the traditional control strategy deteriorates.To solve this problem,this paper proposes a vibration-isolation control strategy based on a genetic algorithm-back propagation neural network-PID control(GA-BP-PID),which can automatically adjust the control parameters according to the machining conditions.Vibration-isolation simulations and experiments based on passive vibration isolation,a PID algorithm,and the GA-BP-PID algorithm under dynamic load machining conditions were conducted.The experimental results demonstrated that the active vibration-isolation control strategy designed in this study could effectively attenuate vibration disturbances in the external environment under dynamic load conditions.This design is reasonable and feasible.