期刊文献+
共找到374篇文章
< 1 2 19 >
每页显示 20 50 100
An inverse analysis of fluid flow through granular media using differentiable lattice Boltzmann method 被引量:1
1
作者 Qiuyu Wang Krishna Kumar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2077-2090,共14页
This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi... This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications. 展开更多
关键词 Inverse problem Fluid flow Granular media Automatic differentiation(AD) lattice Boltzmann method(LBM)
下载PDF
Volumetric lattice Boltzmann method for pore-scale mass diffusionadvection process in geopolymer porous structures 被引量:1
2
作者 Xiaoyu Zhang Zirui Mao +6 位作者 Floyd W.Hilty Yulan Li Agnes Grandjean Robert Montgomery Hans-Conrad zur Loye Huidan Yu Shenyang Hu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2126-2136,共11页
Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti... Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications. 展开更多
关键词 Volumetric lattice Boltzmann method(VLBM) Phase field method(PFM) Pore-scale diffusion-advection Nuclear waste treatment Porous media flow Graphics processing unit(GPU) parallelization
下载PDF
On the spreading behavior of a droplet on a circular cylinder using the lattice Boltzmann method
3
作者 杨帆 金虎 戴梦瑶 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期434-443,共10页
The study of a droplet spreading on a circular cylinder under gravity was carried out using the pseudo-potential lattice Boltzmann high-density ratios multiphase model with a non-ideal Peng–Robinson equation of state... The study of a droplet spreading on a circular cylinder under gravity was carried out using the pseudo-potential lattice Boltzmann high-density ratios multiphase model with a non-ideal Peng–Robinson equation of state. The calculation results indicate that the motion of the droplet on the cylinder can be divided into three stages: spreading, sliding, and aggregating.The contact length and contact time of a droplet on a cylindrical surface can be affected by factors such as the wettability gradient of the cylindrical wall, the Bond number, and droplet size. Furthermore, phase diagrams showing the relationship between Bond number, cylinder wall wettability gradient, and contact time as well as maximum contact length for three different droplet sizes are given. A theoretical foundation for additional research into the heat and mass transfer process between the droplet and the cylinder can be established by comprehending the variable rules of maximum contact length and contact time. 展开更多
关键词 lattice Boltzmann methods DROPLET circular cylinder wettability gradient
下载PDF
A High-Accuracy Curve Boundary Recognition Method Based on the Lattice Boltzmann Method and Immersed Moving Boundary Method
4
作者 Jie-Di Weng Yong-Zheng Jiang +2 位作者 Long-Chao Chen Xu Zhang Guan-Yong Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2533-2557,共25页
Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Latti... Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Lattice Boltzmann(LBM)and the immersion boundary method based on solid ratio(IMB)have limitations in identifying custom curved boundaries.Meanwhile,IBM based on velocity correction(IBM-VC)suffers from inaccuracies and numerical instability.Therefore,this study introduces a high-accuracy curve boundary recognition method(IMB-CB),which identifies boundary nodes by moving the search box,and corrects the weighting function in LBM by calculating the solid ratio of the boundary nodes,achieving accurate recognition of custom curve boundaries.In addition,curve boundary image and dot methods are utilized to verify IMB-CB.The findings revealed that IMB-CB can accurately identify the boundary,showing an error of less than 1.8%with 500 lattices.Also,the flow in the custom curve boundary and aerodynamic characteristics of the NACA0012 airfoil are calculated and compared to IBM-VC.Results showed that IMB-CB yields lower lift and drag coefficient errors than IBM-VC,with a 1.45%drag coefficient error.In addition,the characteristic curve of IMB-CB is very stable,whereas that of IBM-VC is not.For the moving boundary problem,LBM-IMB-CB with discrete element method(DEM)is capable of accurately simulating the physical phenomena of multi-moving particle flow in complex curved pipelines.This research proposes a new curve boundary recognition method,which can significantly promote the stability and accuracy of fluid-solid interaction simulations and thus has huge applications in engineering. 展开更多
关键词 Fluid-solid interaction curve boundary recognition method lattice Boltzmann method immersed moving boundary method
下载PDF
A combined method using Lattice Boltzmann Method(LBM)and Finite Volume Method(FVM)to simulate geothermal reservoirs in Enhanced Geothermal System(EGS)
5
作者 Xiang Gao Tai-lu Li +2 位作者 Yu-wen Qiao Yao Zhang Ze-yu Wang 《Journal of Groundwater Science and Engineering》 2024年第2期132-146,共15页
With the development of industrial activities,global warming has accelerated due to excessive emission of CO_(2).Enhanced Geothermal System(EGS)utilizes deep geothermal heat for power generation.Although porous medium... With the development of industrial activities,global warming has accelerated due to excessive emission of CO_(2).Enhanced Geothermal System(EGS)utilizes deep geothermal heat for power generation.Although porous medium theory is commonly employed to model geothermal reservoirs in EGS,Hot Dry Rock(HDR)presents a challenge as it consists of impermeable granite with zero porosity,potentially distorting the physical interpretation.To address this,the Lattice Boltzmann Method(LBM)is employed to simulate CO_(2)flow within geothermal reservoirs and the Finite Volume Method(FVM)to solve the energy conservation equation for temperature distribution.This combined method of LBM and FVM is imple-mented using MATLAB.The results showed that the Reynolds numbers(Re)of 3,000 and 8,000 lead to higher heat extraction rates from geothermal reservoirs.However,higher Re values may accelerate thermal breakthrough,posing challenges to EGS operation.Meanwhile,non-equilibrium of density in fractures becomes more pronounced during the system's life cycle,with non-Darcy's law becoming significant at Re values of 3,000 and 8,000.Density stratification due to buoyancy effects significantly impacts temperature distribution within geothermal reservoirs,with buoyancy effects at Re=100 under gravitational influence being noteworthy.Larger Re values(3,000 and 8,000)induce stronger forced convection,leading to more uniform density distribution.The addition of proppant negatively affects heat transfer performance in geothermal reservoirs,especially in single fractures.Practical engineering considerations should determine the quantity of proppant through detailed numerical simulations. 展开更多
关键词 lattice boltzmann method Finite volume method Enhanced geothermal system Geothermal reservoir PROPPANT Re Heat extraction rate
下载PDF
Experimental Study of Heat Transfer in an Insulated Local Heated from Below and Comparison with Simulation by Lattice Boltzmann Method
6
作者 Noureddine Abouricha Ayoub Gounni Mustapha El Alami 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期359-375,共17页
In this paper,experimental and numerical studies of heat transfer in a test local of side H=0.8 m heated from below are presented and compared.All the walls,the rest of the floor and the ceiling are made from plywood ... In this paper,experimental and numerical studies of heat transfer in a test local of side H=0.8 m heated from below are presented and compared.All the walls,the rest of the floor and the ceiling are made from plywood and polystyrene in sandwich form(3 mmplywood-3 cm polystyrene-3 mmplywood)just on one of the vertical walls contained a glazed door(2 H/3×0.15 m).This local is heated during two heating cycles by a square plate of iron the width L=0.6 H,which represents the heat source,its temperature T_(h) is controlled.The plate is heated for two cycles by an adjustable set-point heat source placed just down the center of it.For each cycle,the heat source is switched“on”for 6 h and switched“off”for 6 h.The outdoor air temperature is kept constant at a low temperature T_(c)<T_(h).All measurements are carried out with k-type thermocouples and with flux meters.Results will be qualitatively presented for two cycles of heating in terms of temperatures and heat flux densitiesϕfor various positions of the test local.The temperature evolution of the center and the profile of the temperature along the vertical centerline are compared by two dimensions simulation using the lattice Boltzmann method.The comparison shows a good agreement with a difference that does not exceed±1℃. 展开更多
关键词 Experimental study numerical study lattice Boltzmann method heat transfer building insulation thermal comfort
下载PDF
Simulations of the Boiling Process on a Porous Heater by Lattice Boltzmann Method
7
作者 Alexander Fedoseev Mikhail Salnikov 《Frontiers in Heat and Mass Transfer》 EI 2024年第6期1679-1694,共16页
In order to research the process of boiling occurring on a porous surface,a model of multiple blocks was developed.The mathematical basis of these blocks is the lattice Boltzmann method in combination with heat transf... In order to research the process of boiling occurring on a porous surface,a model of multiple blocks was developed.The mathematical basis of these blocks is the lattice Boltzmann method in combination with heat transfer equation.The reported complex allows one to obtain the boiling curves for various wall superheats and to find the optimal parameters of a porous heater in terms of heat transfer enhancement.The porous heater structure is specified as a skeleton of square metal heaters located in the lower part of the computational domain.The calculations were performed for the following parameters of the porous heater structure:different number and size of the metal heaters,different distances between them in horizontal and vertical directions,regular and asymmetric packing of the heaters.Using the developed numerical model,parametric studies of the boiling process on porous heaters with different parameters of the porous skeleton were carried out and phase pictures of such a process were obtained.It was shown that the heat transfer coefficient on a porous heater is 3–7 times greater than that on a smooth heater,and depends on the number of heater elements,their size,and location.The results showed a significant advantage of the porous heaters with greater critical heat flux at higher wall superheats compared to that on the smooth surface. 展开更多
关键词 Pool boiling heat transfer enhancement porous heater lattice Boltzmann method
下载PDF
FLOW FIELD ANALYSES OF PLANE JET AT LOW REYNOLDS NUMBERS USING LATTICE BOLTZMANN METHOD 被引量:5
8
作者 赵立清 孙建红 许常悦 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第3期199-206,共8页
A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The resu... A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The results show that the mean centerline velocity decays as x-1/3 and the jet spreads as x2/3 in the self-similar region, which are consistent with the theoretical predictions and the experimental data. The time histories and PSD analyses of the instantaneous centerline velocities indicate the periodic behavior and the interaction between periodic components of velocities should not be neglected in the far field region, although it is invisible in the near field region. 展开更多
关键词 plane jet low Reynolds number lattice Boltzmann method
下载PDF
Static aeroelastic analysis of very flexible wings based on non-planar vortex lattice method 被引量:13
9
作者 Xie Changchuan Wang Libo +1 位作者 Yang Chao Liu Yi 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第3期514-521,共8页
A rapid and efficient method for static aeroelastic analysis of a flexible slender wing when considering the structural geometric nonlinearity has been developed in this paper. A non-planar vortex lattice method herei... A rapid and efficient method for static aeroelastic analysis of a flexible slender wing when considering the structural geometric nonlinearity has been developed in this paper. A non-planar vortex lattice method herein is used to compute the non-planar aerodynamics of flexible wings with large deformation. The finite element method is introduced for structural nonlinear statics analysis. The surface spline method is used for structure/aerodynamics coupling. The static aeroelastic characteristics of the wind tunnel model of a flexible wing are studied by the nonlinear method presented, and the nonlinear method is also evaluated by comparing the results with those obtained from two other methods and the wind tunnel test. The results indicate that the traditional linear method of static aeroelastic analysis is not applicable for cases with large deformation because it produces results that are not realistic. However, the nonlinear methodology, which involves combining the structure finite element method with the non-planar vortex lattice method, could be used to solve the aeroelastic deformation with considerable accuracy, which is in fair agreement with the test results. Moreover, the nonlinear finite element method could consider complex structures. The non-planar vortex lattice method has advantages in both the computational accuracy and efficiency. Consequently, the nonlinear method presented is suitable for the rapid and efficient analysis requirements of engineering practice. It could be used in the preliminary stage and also in the detailed stage of aircraft design. 展开更多
关键词 Aeroelasticity Geometric nonlinearity Non-planar aerodynamics Static aeroelasticity Vortex lattice method
原文传递
Tolerance of edge cascades with coupled map lattices methods 被引量:7
10
作者 崔迪 高自友 郑建风 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第3期992-996,共5页
This paper studies the cascading failure on random networks and scale-free networks by introducing the tolerance parameter of edge based on the coupled map lattices methods. The whole work focuses on investigating som... This paper studies the cascading failure on random networks and scale-free networks by introducing the tolerance parameter of edge based on the coupled map lattices methods. The whole work focuses on investigating some indices including the number of failed edges, dynamic edge tolerance capacity and the perturbation of edge. In general, it assumes that the perturbation is attributed to the normal distribution in adopted simulations. By investigating the effectiveness of edge tolerance in scale-free and random networks, it finds that the larger tolerance parameter λ can more efficiently delay the cascading failure process for scale-free networks than random networks. These results indicate that the cascading failure process can be effectively controlled by increasing the tolerance parameter λ. Moreover, the simulations also show that, larger variance of perturbation can easily trigger the cascading failures than the smaller one. This study may be useful for evaluating efficiency of whole traffic systems, and for alleviating cascading failure in such systems. 展开更多
关键词 cascading failures coupled map lattice methods TOLERANCE
下载PDF
NOVEL IMMERSED BOUNDARY-LATTICE BOLTZMANN METHOD BASED ON FEEDBACK LAW 被引量:1
11
作者 李秀娟 赵荣国 钟诚文 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第2期179-186,共8页
The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S)... The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S) equation. This paper proposes a novel immersed boundary-lattice Boltzmann method (IB-LBM) based on the feedback law. The method uses the immersed boundary concept in the LBM framework to capture the coupling between a body with complex geometry and a uniform fluid, Then, the flows around a stationary circular cylinder and two circular cylinders in a side by side arrangement are simulated by using the method. Results are agreed well with the benchmark data, so, the capability of the method for complex geometry is demonstrated. Different from the conventional IB-LBM, which uses the Hook's law or the direct forcing method to compute the interae- tion force, the method uses the feedback law--the feedback of velocity field and displacement information to calculate the force, thus ensuring the method has advantages of easy implementation and full parallelism. 展开更多
关键词 computational fluid dynamics lattice Boltzmann method immersed boundary method feedback law circular cylinder
下载PDF
Acceleration of unsteady vortex lattice method via dipole panel fast multipole method 被引量:1
12
作者 Shuai DENG Chen JIANG +1 位作者 Yunjie WANG Haowen WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第2期265-278,共14页
The Unsteady Vortex Lattice Method(UVLM) is a medium-fidelity aerodynamic tool that has been widely used in aeroelasticity and flight dynamics simulations. The most timeconsuming step is the evaluation of the induced ... The Unsteady Vortex Lattice Method(UVLM) is a medium-fidelity aerodynamic tool that has been widely used in aeroelasticity and flight dynamics simulations. The most timeconsuming step is the evaluation of the induced velocity. Supposing that the number of bound and wake lattices is N and the computational cost is O (N2), we present an OeNT Dipole Panel Fast Multipole Method(DPFMM) for the rapid evaluation of the induced velocity in UVLM. The multipole expansion coefficients of a quadrilateral dipole panel have been derived in spherical coordinates, whose accuracy is the same as that of the Biot-Savart kernel at the same truncation degree P.Two methods(the loosening method and the shrinking method) are proposed and tested for space partitioning volumetric panels. Compared with FMM for vortex filaments(with three harmonics),DPFMM is approximately two times faster for N2 [103,106]. The simulation time of a multirotor(N~104) is reduced from 100 min(with unaccelerated direct solver) to 2 min(with DPFMM). 展开更多
关键词 Boundary element method Dipole potentials Fast multipole method Potential flow Unsteady vortex lattice method
原文传递
COMPRESSIBLE FLOW SIMULATION AROUND AIRFOIL BASED ON LATTICE BOLTZMANN METHOD
13
作者 钟诚文 李凯 +2 位作者 孙建红 卓从山 解建飞 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第3期206-211,共6页
The flow around airfoil NACA0012 enwrapped by the body-fitted grid is simulated by a coupled doubledistribution-function (DDF) lattice Boltzmann method (LBM) for the compressible Navier-Stokes equations. Firstly, ... The flow around airfoil NACA0012 enwrapped by the body-fitted grid is simulated by a coupled doubledistribution-function (DDF) lattice Boltzmann method (LBM) for the compressible Navier-Stokes equations. Firstly, the method is tested by simulating the low Reynolds number flow at Ma =0. 5,a=0. 0, Re=5 000. Then the simulation of flow around the airfoil is carried out at Ma:0. 5, 0. 85, 1.2; a=-0.05, 1.0, 0.0, respectively. And a better result is obtained by using a local refined grid. It reduces the error produced by the grid at Ma=0. 85. Though the inviscid boundary condition is used to avoid the problem of flow transition to turbulence at high Reynolds numbers, the pressure distribution obtained by the simulation agrees well with that of the experimental results. Thus, it proves the reliability of the method and shows its potential for the compressible flow simulation. The suecessful application to the flow around airfoil lays a foundation of the numerical simulation of turbulence. 展开更多
关键词 compressible flow computational fluid dynamics lattice Boltzmann method AIRFOIL body-fitted grid
下载PDF
The Full Multi-wake Vortex Lattice Method:a detached flow model based on Potential Flow Theory
14
作者 Jesus Carlos Pimentel-Garcia 《Advances in Aerodynamics》 EI 2023年第1期452-477,共26页
One of the main issues concerning the standard Vortex Lattice Method is its application to partially or fully detached flow conditions,where non-linear aerodynamic characteristics appear as the angle of attack increas... One of the main issues concerning the standard Vortex Lattice Method is its application to partially or fully detached flow conditions,where non-linear aerodynamic characteristics appear as the angle of attack increases and/or the aspect ratio decreases.In order to solve such limitations,a pure numerical approach based entirely on the Vortex Lattice Method concepts has been developed.The so-called steady“Full Multi-wake Vortex Lattice Method”comes from the main hypothesis that each discretized element on the body’s surface detaches their own wakes downstream.The obtained results match for lift,drag and moment coefficients for the entire aspect ratio range configurations(under straight wakes and inviscid assumptions).Future unsteady versions of such a multi-wake approach could improve the current results obtained through Vortex Element Methods(as vortons or isolated vortex filaments). 展开更多
关键词 Potential Flow Theory Ideal flow Detached flow Vorticity generation Vortex lattice method Kutta condition
原文传递
Free convection of nanofluid filled enclosure using lattice Boltzmann method (LBM) 被引量:9
15
作者 M.SHEIKHOLESLAMI M.GORJI-BANDPY G.DOMAIRRY 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第7期833-846,共14页
The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanopa... The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanoparticles: TiO2, Ag, Cu, and A1203. The Brinkman and Maxwell-Garnetts models are used to simulate the viscosity and the effective thermal conductivity of nanofluids, respectively. Results from the performed numerical analysis show good agreement with those obtained from other numerical meth- ods. A variety of the Rayleigh number, the nanoparticle volume fraction, and the aspect ratio are examined. According to the results, choosing copper as the nanoparticle leads to obtaining the highest enhancement for this problem. The results also indicate that the maximum value of enhancement occurs at λ =2.5 when Ra = 106 while at A = 1.5 for other Rayleigh numbers. 展开更多
关键词 lattice Boltzmann method (LBM) NANOFLUID natural convection concentric annular cavity
下载PDF
Simulating high Reynolds number flow in two-dimensional lid-driven cavity by multi-relaxation-time lattice Boltzmann method 被引量:4
16
作者 柴振华 施保昌 郑林 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第8期1855-1863,共9页
By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improv... By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improved greatly, especially on simulating high Reynolds number (Re) flow. As a discovery, the super-stability analysed by Lallemand and Luo is verified and the complex structure of the cavity flow is also exhibited in our numerical simulation when Re is high enough. To the best knowledge of the authors, the maximum of Re which has been investigated by direct numerical simulation is only around 50 000 in the literature; however, this paper can readily extend the maximum to 1000 000 with the above combination. 展开更多
关键词 multi-relaxation-time lattice Boltzmann method non-equilibrium extrapolation scheme high Reynolds number lid-driven cavity flow
下载PDF
New Boundary Treatment Methods for Lattice Boltzmann Method 被引量:3
17
作者 Cheng Yong-guang +1 位作者 Suo Li-sheng 《Wuhan University Journal of Natural Sciences》 CAS 2003年第01A期77-85,共9页
In practical fluid dynamic simulations, the bou n dary condition should be treated carefully because it always has crucial influen ce on the numerical accuracy, stability and efficiency. Two types of boundary tr eatme... In practical fluid dynamic simulations, the bou n dary condition should be treated carefully because it always has crucial influen ce on the numerical accuracy, stability and efficiency. Two types of boundary tr eatment methods for lattice Boltzmann method (LBM) are proposed. One is for the treatment of boundaries situated at lattice nodes, and the other is for the appr oximation of boundaries that are not located at the regular lattice nodes. The f irst type of boundary treatment method can deal with various dynamic boundaries on complex geometries by using a general set of formulas, which can maintain sec ond\|order accuracy. Based on the fact that the fluid flows simulated by LBM are not far from equilibrium, the unknown distributions at a boundary node are expr essed as the analogous forms of their corresponding equilibrium distributions. T herefore, the number of unknowns can be reduced and an always\|closed set of equ ations can be obtained for the solutions to pressure, velocity and special bound ary conditions on various geometries. The second type of boundary treatment is a complete interpolation scheme to treat curved boundaries. It comes from careful analysis of the relations between distribution functions at boundary nodes and their neighboring lattice nodes. It is stable for all situations and of second\| order accuracy. Basic ideas, implementation procedures and verifications with ty pical examples for the both treatments are presented. Numerical simulations and analyses show that they are accurate, stable, general and efficient for practica l simulations. 展开更多
关键词 boundary condition lattice Boltzmann method distribution function
下载PDF
Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method 被引量:2
18
作者 张庆宇 孙东科 +1 位作者 张友法 朱鸣芳 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期349-354,共6页
In the present study,the process of droplet condensation on superhydrophobic nanoarrays is simulated using a multicomponent multi-phase lattice Boltzmann model.The results indicate that three typical nucleation modes ... In the present study,the process of droplet condensation on superhydrophobic nanoarrays is simulated using a multicomponent multi-phase lattice Boltzmann model.The results indicate that three typical nucleation modes of condensate droplets are produced by changing the geometrical parameters of nanoarrays.Droplets nucleated at the top(top-nucleation mode),or in the upside interpillar space of nanoarrays(side-nucleation mode),generate the non-wetting Cassie state,whereas the ones nucleated at the bottom corners between the nanoarrays(bottom-nucleation mode) present the wetting Wenzel state.Time evolutions of droplet pressures at the upside and downside of the liquid phase are analyzed to understand the wetting behaviors of the droplets condensed from different nucleation modes.The phenomena of droplet condensation on nanoarrays patterned with different hydrophilic and hydrophobic regions are simulated,indicating that the nucleation mode of condensate droplets can also be manipulated by modifying the local intrinsic wettability of nanoarray surface.The simulation results are compared well with the experimental observations reported in the literature. 展开更多
关键词 condensate droplet superhydrophobic nanoarray WETTABILITY lattice Boltzmann method
下载PDF
A study of the upper limit of solid scatters density for gray Lattice Boltzmann Method 被引量:2
19
作者 Yongli Chen Keqin Zhu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第5期515-522,共8页
The upper limit of the solid scatters density ns (x), a key parameter for the simulation of flows in porous media with a gray Lattice Boltzmann Method, is studied by an analytical way for the infiltration Poiseuille... The upper limit of the solid scatters density ns (x), a key parameter for the simulation of flows in porous media with a gray Lattice Boltzmann Method, is studied by an analytical way for the infiltration Poiseuille flow between two infinite parallel plates. Analyses of three different gray Lattice Boltzmann schemes, separately proposed by Gao and Sharma et al., Dardis and McCloskey, and Thorne and Sukop, indicate that the effective domain of Gao and Sharma's scheme is restricted to ns 〈 1/2√3≈0.289, Dardis and McCloskey's scheme is restricted to ns 〈 (√57-1)/28≈0.234, and that there is no extra restriction on ns(x) with Thorne and Sukop's scheme. These results are obtained for the dimensionless relaxation time τ= 1. The above analytical results are verified by our numerical simulations. The use of a gray LBM is further illustrated by simulating the flow at the interface of a porous medium. Simulation results yield velocity profiles which agree very well with Brinkman's prediction. 展开更多
关键词 Gray lattice Boltzmann method Infiltration flow Scattering density Porous media
下载PDF
Numerical simulation of non-Archie electrophysical property of saturated rock with lattice Boltzmann method 被引量:2
20
作者 Yue Wenzheng Tao Guo +1 位作者 Liu Dongming Yang Wendu 《Petroleum Science》 SCIE CAS CSCD 2009年第1期24-28,共5页
The electrophysical property of saturated rocks is very important for reservoir identification and evaluation. In this paper, the lattice Boltzmann method (LBM) was used to study the electrophysical property of rock... The electrophysical property of saturated rocks is very important for reservoir identification and evaluation. In this paper, the lattice Boltzmann method (LBM) was used to study the electrophysical property of rock saturated with fluid because of its advantages over conventional numerical approaches in handling complex pore geometry and boundary conditions. The digital core model was constructed through the accumulation of matrix grains based on their radius distribution obtained by the measurements of core samples. The flow of electrical current through the core model saturated with oil and water was simulated on the mesoscopic scale to reveal the non-Archie relationship between resistivity index and water saturation (I-Sw). The results from LBM simulation and laboratory measurements demonstrated that the I-Sw relation in the range of low water saturation was generally not a straight line in the log-log coordinates as described by the Archie equation. We thus developed a new equation based on numerical simulation and physical experiments. This new equation was used to fit the data from laboratory core measurements and previously published data. Determination of fluid saturation and reservoir evaluation could be significantly improved by using the new equation. 展开更多
关键词 Non-Archie relation digital core model lattice Boltzmann method numerical simulation rock physical experiment
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部