Co-free Li-rich layered oxide cathodes have drawn much attention owing to their low cost and high energy density.Nevertheless,anion oxidation of oxygen leads to oxygen peroxidation during the first charging process,wh...Co-free Li-rich layered oxide cathodes have drawn much attention owing to their low cost and high energy density.Nevertheless,anion oxidation of oxygen leads to oxygen peroxidation during the first charging process,which leads to co-migration of transition metal ions and oxygen vacancies,causing structural instability.In this work,we propose a pre-activation strategy driven by chemical impregnation to modulate the chemical state of surface lattice oxygen,thus regulating the structural and electrochemical properties of the cathodes.In-situ X-ray diffraction confirms that materials based on activated oxygen configuration have higher structural stability.More importantly,this novel efficient strategy endows the cathodes having a lower surface charge transfer barrier and higher Li+transfer kinetics characteristic and ameliorates its inherent issues.The optimized cathode exhibits excellent electrochemical performance:after 300 cycles,high capacity(from 238 m Ah g^(-1)to 193 m Ah g^(-1)at 1 C)and low voltage attenuation(168 mV)are obtained.Overall,this modulated surface lattice oxygen strategy improves the electrochemical activity and structural stability,providing an innovative idea to obtain high-capacity Co-free Li-rich cathodes for next-generation Li-ion batteries.展开更多
基金the National Natural Science Foundation of China(51902072 and 22075062)the Heilongjiang Touyan Team(HITTY-20190033)+2 种基金the Heilongjiang Province“hundred million”project science and technology major special projects(2019ZX09A02)the State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology No.2020DX11)the Fundamental Research Funds for the Central Universities(FRFCU5710051922)。
文摘Co-free Li-rich layered oxide cathodes have drawn much attention owing to their low cost and high energy density.Nevertheless,anion oxidation of oxygen leads to oxygen peroxidation during the first charging process,which leads to co-migration of transition metal ions and oxygen vacancies,causing structural instability.In this work,we propose a pre-activation strategy driven by chemical impregnation to modulate the chemical state of surface lattice oxygen,thus regulating the structural and electrochemical properties of the cathodes.In-situ X-ray diffraction confirms that materials based on activated oxygen configuration have higher structural stability.More importantly,this novel efficient strategy endows the cathodes having a lower surface charge transfer barrier and higher Li+transfer kinetics characteristic and ameliorates its inherent issues.The optimized cathode exhibits excellent electrochemical performance:after 300 cycles,high capacity(from 238 m Ah g^(-1)to 193 m Ah g^(-1)at 1 C)and low voltage attenuation(168 mV)are obtained.Overall,this modulated surface lattice oxygen strategy improves the electrochemical activity and structural stability,providing an innovative idea to obtain high-capacity Co-free Li-rich cathodes for next-generation Li-ion batteries.