On the basis of the vector formula of the Newton’s law for a viscous liquid and the integrated vector form of the equation of an impulse for a viscous liquid for resistance and carrying power of a profile of any form...On the basis of the vector formula of the Newton’s law for a viscous liquid and the integrated vector form of the equation of an impulse for a viscous liquid for resistance and carrying power of a profile of any form and the big length dependences are found in a stream. Application of the found dependences at a circulating flow of the cylinder located across a stream is showed. The analysis of a tensor of viscosity for laminar and turbulent flow is carried out.展开更多
Symmetric circulant matrices (or shortly symmetric circulants) are a very special class of matrices sometimes arising in problems of discrete periodic convolutions with symmetric kernel. First, we collect major proper...Symmetric circulant matrices (or shortly symmetric circulants) are a very special class of matrices sometimes arising in problems of discrete periodic convolutions with symmetric kernel. First, we collect major properties of symmetric circulants scattered through the literature. Second, we report two new applications of these matrices to isotropic Markov chain models and electrical impedance tomography on a homogeneous disk with equidistant electrodes. A new special function is introduced for computation of the Ohm’s matrix. The latter application is illustrated with estimation of the resistivity of gelatin using an electrical impedance tomography setup.展开更多
文摘On the basis of the vector formula of the Newton’s law for a viscous liquid and the integrated vector form of the equation of an impulse for a viscous liquid for resistance and carrying power of a profile of any form and the big length dependences are found in a stream. Application of the found dependences at a circulating flow of the cylinder located across a stream is showed. The analysis of a tensor of viscosity for laminar and turbulent flow is carried out.
文摘Symmetric circulant matrices (or shortly symmetric circulants) are a very special class of matrices sometimes arising in problems of discrete periodic convolutions with symmetric kernel. First, we collect major properties of symmetric circulants scattered through the literature. Second, we report two new applications of these matrices to isotropic Markov chain models and electrical impedance tomography on a homogeneous disk with equidistant electrodes. A new special function is introduced for computation of the Ohm’s matrix. The latter application is illustrated with estimation of the resistivity of gelatin using an electrical impedance tomography setup.