A proactive routing protocol CL-OLSR (cross-layer based optimized link state routing) by using a brand-new routing metric CLM (cross-layer metric) is proposed. CL-OLSR takes into account four link quality impact f...A proactive routing protocol CL-OLSR (cross-layer based optimized link state routing) by using a brand-new routing metric CLM (cross-layer metric) is proposed. CL-OLSR takes into account four link quality impact factors in route calculation through the cross-layer operation mechanism: the node available bandwidth, the node load, the link delivery rate, and the link interference, and thus the effect of route selection is optimized greatly. The simulation results show that the proposed CL-OLSR protocol can not only improve the network throughput to a large extent, but also reduce the end-to-end delay, while achieving load balance route results.展开更多
A cross-layer design(CLD)scheme with combination of power allocation,adaptive modulation(AM)and automatic repeat request(ARQ)is presented for space-time coded MIMO system under imperfect feedback,and the corresponding...A cross-layer design(CLD)scheme with combination of power allocation,adaptive modulation(AM)and automatic repeat request(ARQ)is presented for space-time coded MIMO system under imperfect feedback,and the corresponding system performance is investigated in a Rayleigh fading channel.Based on imperfect feedback information,a suboptimal power allocation(PA)scheme is derived to maximize the average spectral efficiency(SE)of the system.The scheme is based on a so-called compressed SNR criterion,and has a closed-form expression for positive power allocation,thus being computationally efficient.Moreover,it can improve SE of the presented CLD.Besides,due to better approximation,it obtains the performance close to the existing optimal approach which requires numerical search.Simulation results show that the proposed CLD with PA can achieve higher SE than the conventional CLD with equal power allocation scheme,and has almost the same performance as CLD with optimal PA.However,it has lower calculation complexity.展开更多
To provide quality-of service (QoS) guarantees for heterogeneous applications, most recent wireless communications technologies and standards combine the error-correcting capability of hybrid automatic repeat request ...To provide quality-of service (QoS) guarantees for heterogeneous applications, most recent wireless communications technologies and standards combine the error-correcting capability of hybrid automatic repeat request (HARQ) schemes at the data link layer (DLL) with the adaptation ability of the adaptive modulation and coding (AMC) modes at the physical layer (PHY) layer. This paper aims to investigate the aggregated system capacity as well as the breakdown of this capacity for different ACM modes in each HARQ scheme. This investigation was done by using maximum weighted capacity (MWC) resource allocation at the PHY layer in conjunction with a novel packet error rate (PER)-based scheduling at the medium access control (MAC) layer. As a result, the dominant AMC mode corresponding to channel SNR was available.展开更多
A cross-layer design which combines adaptive modulation and coding (AMC) at the physical layer with a hybrid automatic repeat request (HARQ) protocol at the data link layer (LL) is presented, in cooperative relay syst...A cross-layer design which combines adaptive modulation and coding (AMC) at the physical layer with a hybrid automatic repeat request (HARQ) protocol at the data link layer (LL) is presented, in cooperative relay system over Nakagami-m fading channels with perfect and imperfect channel state information (CSI). In order to maximize spectral efficiency (SE) under delay and packet error rate (PER) performance constraints, a state transition model and an optimization framework with perfect CSI are presented. Then the framework is extended to cooperative relay system with imperfect CSI. The numerical results show that the scheme can achieve maximum SE while satisfying transmitting delay requirements. Compared with the imperfect CSI, the average PER with perfect CSI is much lower and the spectral efficiency is much higher.展开更多
This paper extends the work on cross-layer design which combines adaptive modulation and coding at the physical layer and hybrid automatic repeat request protocol at the data link layer. By contrast with previous work...This paper extends the work on cross-layer design which combines adaptive modulation and coding at the physical layer and hybrid automatic repeat request protocol at the data link layer. By contrast with previous works on this topic, the present development and the performance analysis as well, is based on rate compatible punctured turbo codes. Rate compatibility provides incremental redundancy in transmission of parity bits for error correction at the data link layer. Turbo coding and iterative decoding gives lower packet error rate values in low signal-to-noise ratio regions of the adaptive modulation and coding (AMC) schemes. Thus, the applied cross-layer design results in AMC schemes can achieve better spectral efficiency than convolutional one while it retains the QoS requirements at the application layer. Numerical results in terms of spectral efficiency for both turbo and convolutional rate compatible punctured codes are presented. For a more comprehensive presentation, the performance of rate compatible LDPC is contrasted with turbo case as well as the performance complexity is discussed for each of the above codes.展开更多
Several protocols and schemes have been proposed to reduce energy consumption in Wireless Sensor Net-works (WSNs). In this paper we employ farcoopt, a cross layer design approach with the concept of coop-eration among...Several protocols and schemes have been proposed to reduce energy consumption in Wireless Sensor Net-works (WSNs). In this paper we employ farcoopt, a cross layer design approach with the concept of coop-eration among the nodes with best farthest neighbor scheme to increase the Quality of Service (QoS), reduce energy consumption, increases performance and end-to-end throughput. We present cooperative transmission to connect previously disconnect parts of a network thus overcoming the separation problem of multi-hop network. We show that this approach improves connectivity over 50% compared to multi-hop approaches and reduces the number of nodes necessary to provide full coverage of an area up to 35%. Simulation results show that on increase of data rates i.e. packet the network life time increases in farcoopt as compared to tra-ditional multi hop approach. The result of this analysis is presented in this work.展开更多
Experimentation has come a long in helping researchers achieve breakthroughs in their different scientific areas and engineering happens to be one of those areas with the most impact from experimental advancement. The...Experimentation has come a long in helping researchers achieve breakthroughs in their different scientific areas and engineering happens to be one of those areas with the most impact from experimental advancement. The need for valid experimental results free from biases and confounding conclusions has prompted the development of new experimental techniques that takes consideration of all applicable factor and combinations in providing answers on a research topic, and the Factorial Experimental design credited to Sir Ronald Fisher is one technique yielding highly valid results. This paper uses the factorial design of experiments to research the flexural impact of polyvinyl acetate fiber and layered concrete in construction. The experiment considered two levels of fiber contents and two levels of layers, and prepared samples with all combinations of the variable factors. The samples were tested after 7 days from casting for flexural strength and an advance statistical analysis was performed on the flexural responses of the samples using R-program. The results from the analyses revealed the significance of the variables to the flexural strength of the samples, as well as their interactions. The experiment concluded that based on the number of layers and fiber content used for the experiment, casting concrete in layers does have a significant negative effect on the flexural strength of concrete, and the failure pattern of concrete members under flexural load in evidently influenced by the material composition of the concrete, and that it can be evidently influenced by casting the concrete in layers.展开更多
This paper puts forward a novel cognitive cross-layer design algorithms for multihop wireless networks optimization across physical,mediam access control (MAC),network and transport layers.As is well known,the conve...This paper puts forward a novel cognitive cross-layer design algorithms for multihop wireless networks optimization across physical,mediam access control (MAC),network and transport layers.As is well known,the conventional layered-protocol architecture can not provide optimal performance for wireless networks,and cross-layer design is becoming increasingly important for improving the performance of wireless networks.In this study,we formulate a specific network utility maximization (NUM) problem that we believe is appropriate for multihop wireless networks.By using the dual algorithm,the NUM problem has been optimal decomposed and solved with a novel distributed cross-layer design algorithm from physical to transport layers.Our solution enjoys the benefits of cross-layer optimization while maintaining the simplicity and modularity of the traditional layered architecture.The proposed cross-layer design can guarantee the end-to-end goals of data flows while fully utilizing network resources.Computer simulations have evaluated an enhanced performance of the proposed algorithm at both average source rate and network throughput.Meanwhile,the proposed algorithm has low implementation complexity for practical reality.展开更多
The main research objective in wireless sensor networks (WSN) domain is to develop algorithms and protocols to ensure minimal energy consumption with maximum network lifetime. In this paper, we propose a novel design ...The main research objective in wireless sensor networks (WSN) domain is to develop algorithms and protocols to ensure minimal energy consumption with maximum network lifetime. In this paper, we propose a novel design for energy harvesting sensor node and cross-layered MAC protocol using three adjacent layers (Physical, MAC and Network) to economize energy for WSN. The basic idea behind our protocol is to re-energize the neighboring nodes using the radio frequency (RF) energy transmitted by the active nodes. This can be achieved by designing new energy harvesting sensor node and redesigning the MAC protocol. The results show that the proposed cross layer CL_EHSN improves the life time of the WSN by 40%.展开更多
We present a design method for calculating and optimizing sound absorption coefficient of multi-layered porous fibrous metals (PFM) in the low frequency range. PFM is simplified as an equivalent idealized sheet with...We present a design method for calculating and optimizing sound absorption coefficient of multi-layered porous fibrous metals (PFM) in the low frequency range. PFM is simplified as an equivalent idealized sheet with all metallic fibers aligned in one direction and distributed in periodic hexagonal patterns. We use a phenomenological model in the literature to investigate the effects of pore geometrical parameters (fiber diameter and gap) on sound absorption performance. The sound absorption coefficient of multi- layered PFMs is calculated using impedance translation theorem, To demonstrate the validity of the present model, we compare the predicted results with the experimental data. With the average sound absorption (low frequency range) as the objective function and the fiber gaps as the design variables, an optimization method for multi-layered fibrous metals is proposed. A new fibrous layout with given porosity of multi-layered fibrous metals is suggested to achieve optimal low frequency sound absorption. The sound absorption coefficient of the optimal multi-layered fibrous metal is higher than the single- layered fibrous metal, and a significant effect of the fibrous material on sound absorption is found due to the surface Dorosity of the multi-layered fibrous.展开更多
Based on analytic hierarchy process(AHP) theory,a vital important problem for top-layer planning and overall design of modern self-propelled gun-howitzer system,namely overall project decision-making,was analyzed.A hi...Based on analytic hierarchy process(AHP) theory,a vital important problem for top-layer planning and overall design of modern self-propelled gun-howitzer system,namely overall project decision-making,was analyzed.A hierarchy model was built to solve the complex and uncertain problem,and a decision-making index system was established.Then,the weights in all layers of the model were determined by simulating experts.Finally,according to the calculated results of the elements in each layer,the weights of the alternatives to the overall goal were calculated to conduct the hierarchy total decision.A decision example shows that the overall project of a self-propelled gun-howitzer A is much better than that of another self-propelled gun-howitzer B,digitalized in comprehensive efficiency,operability,system accuracy and economy,but inferior to it in the information capability,and there exists relatively larger gap between them in the information sharing index.展开更多
This paper presents an innovative Soft Design Science Methodology for improving information systems security using multi-layered security approach. The study applied Soft Design Science Methodology to address the prob...This paper presents an innovative Soft Design Science Methodology for improving information systems security using multi-layered security approach. The study applied Soft Design Science Methodology to address the problematic situation on how information systems security can be improved. In addition, Soft Design Science Methodology was compounded with mixed research methodology. This holistic approach helped for research methodology triangulation. The study assessed security requirements and developed a framework for improving information systems security. The study carried out maturity level assessment to determine security status quo in the education sector in Tanzania. The study identified security requirements gap (IT security controls, IT security measures) using ISO/IEC 21827: Systems Security Engineering-Capability Maturity Model (SSE-CMM) with a rating scale of 0 - 5. The results of this study show that maturity level across security domain is 0.44 out of 5. The finding shows that the implementation of IT security controls and security measures for ensuring security goals are lacking or conducted in ad-hoc. Thus, for improving the security of information systems, organisations should implement security controls and security measures in each security domain (multi-layer security). This research provides a framework for enhancing information systems security during capturing, processing, storage and transmission of information. This research has several practical contributions. Firstly, it contributes to the body of knowledge of information systems security by providing a set of security requirements for ensuring information systems security. Secondly, it contributes empirical evidence on how information systems security can be improved. Thirdly, it contributes on the applicability of Soft Design Science Methodology on addressing the problematic situation in information systems security. The research findings can be used by decision makers and lawmakers to improve existing cyber security laws, and enact laws for data privacy and sharing of open data.展开更多
基金supported by the Fundamental Research Funds for the Central Universities under Grant No.ZYGX2009j006Foundation of Science & Technology Department of Sichuan Province under Grant No.2011GZ0192
文摘A proactive routing protocol CL-OLSR (cross-layer based optimized link state routing) by using a brand-new routing metric CLM (cross-layer metric) is proposed. CL-OLSR takes into account four link quality impact factors in route calculation through the cross-layer operation mechanism: the node available bandwidth, the node load, the link delivery rate, and the link interference, and thus the effect of route selection is optimized greatly. The simulation results show that the proposed CL-OLSR protocol can not only improve the network throughput to a large extent, but also reduce the end-to-end delay, while achieving load balance route results.
基金Supported by the Foundation of Huaian Industrial Projects(HAG2013064)the Foundation of Huaiyin Institute of Technology(HGB1202)the Doctoral Fund of Ministry of Education of China(20093218120021)
文摘A cross-layer design(CLD)scheme with combination of power allocation,adaptive modulation(AM)and automatic repeat request(ARQ)is presented for space-time coded MIMO system under imperfect feedback,and the corresponding system performance is investigated in a Rayleigh fading channel.Based on imperfect feedback information,a suboptimal power allocation(PA)scheme is derived to maximize the average spectral efficiency(SE)of the system.The scheme is based on a so-called compressed SNR criterion,and has a closed-form expression for positive power allocation,thus being computationally efficient.Moreover,it can improve SE of the presented CLD.Besides,due to better approximation,it obtains the performance close to the existing optimal approach which requires numerical search.Simulation results show that the proposed CLD with PA can achieve higher SE than the conventional CLD with equal power allocation scheme,and has almost the same performance as CLD with optimal PA.However,it has lower calculation complexity.
文摘To provide quality-of service (QoS) guarantees for heterogeneous applications, most recent wireless communications technologies and standards combine the error-correcting capability of hybrid automatic repeat request (HARQ) schemes at the data link layer (DLL) with the adaptation ability of the adaptive modulation and coding (AMC) modes at the physical layer (PHY) layer. This paper aims to investigate the aggregated system capacity as well as the breakdown of this capacity for different ACM modes in each HARQ scheme. This investigation was done by using maximum weighted capacity (MWC) resource allocation at the PHY layer in conjunction with a novel packet error rate (PER)-based scheduling at the medium access control (MAC) layer. As a result, the dominant AMC mode corresponding to channel SNR was available.
基金Sponsored by the National Science and Technology Major Special Project of China (Grant No.2011ZX03003-003-02)the Natural Science Foundation of China (Grant No. 60972070)+2 种基金the Natural Science Foundation of Chongqing (Grant No. CSTC2009BA2090)the Foundation of Chongqing Educational Committee ( Grant No. KJ100514)the Special Fund of Chongqing Key Laboratory
文摘A cross-layer design which combines adaptive modulation and coding (AMC) at the physical layer with a hybrid automatic repeat request (HARQ) protocol at the data link layer (LL) is presented, in cooperative relay system over Nakagami-m fading channels with perfect and imperfect channel state information (CSI). In order to maximize spectral efficiency (SE) under delay and packet error rate (PER) performance constraints, a state transition model and an optimization framework with perfect CSI are presented. Then the framework is extended to cooperative relay system with imperfect CSI. The numerical results show that the scheme can achieve maximum SE while satisfying transmitting delay requirements. Compared with the imperfect CSI, the average PER with perfect CSI is much lower and the spectral efficiency is much higher.
文摘This paper extends the work on cross-layer design which combines adaptive modulation and coding at the physical layer and hybrid automatic repeat request protocol at the data link layer. By contrast with previous works on this topic, the present development and the performance analysis as well, is based on rate compatible punctured turbo codes. Rate compatibility provides incremental redundancy in transmission of parity bits for error correction at the data link layer. Turbo coding and iterative decoding gives lower packet error rate values in low signal-to-noise ratio regions of the adaptive modulation and coding (AMC) schemes. Thus, the applied cross-layer design results in AMC schemes can achieve better spectral efficiency than convolutional one while it retains the QoS requirements at the application layer. Numerical results in terms of spectral efficiency for both turbo and convolutional rate compatible punctured codes are presented. For a more comprehensive presentation, the performance of rate compatible LDPC is contrasted with turbo case as well as the performance complexity is discussed for each of the above codes.
文摘Several protocols and schemes have been proposed to reduce energy consumption in Wireless Sensor Net-works (WSNs). In this paper we employ farcoopt, a cross layer design approach with the concept of coop-eration among the nodes with best farthest neighbor scheme to increase the Quality of Service (QoS), reduce energy consumption, increases performance and end-to-end throughput. We present cooperative transmission to connect previously disconnect parts of a network thus overcoming the separation problem of multi-hop network. We show that this approach improves connectivity over 50% compared to multi-hop approaches and reduces the number of nodes necessary to provide full coverage of an area up to 35%. Simulation results show that on increase of data rates i.e. packet the network life time increases in farcoopt as compared to tra-ditional multi hop approach. The result of this analysis is presented in this work.
文摘Experimentation has come a long in helping researchers achieve breakthroughs in their different scientific areas and engineering happens to be one of those areas with the most impact from experimental advancement. The need for valid experimental results free from biases and confounding conclusions has prompted the development of new experimental techniques that takes consideration of all applicable factor and combinations in providing answers on a research topic, and the Factorial Experimental design credited to Sir Ronald Fisher is one technique yielding highly valid results. This paper uses the factorial design of experiments to research the flexural impact of polyvinyl acetate fiber and layered concrete in construction. The experiment considered two levels of fiber contents and two levels of layers, and prepared samples with all combinations of the variable factors. The samples were tested after 7 days from casting for flexural strength and an advance statistical analysis was performed on the flexural responses of the samples using R-program. The results from the analyses revealed the significance of the variables to the flexural strength of the samples, as well as their interactions. The experiment concluded that based on the number of layers and fiber content used for the experiment, casting concrete in layers does have a significant negative effect on the flexural strength of concrete, and the failure pattern of concrete members under flexural load in evidently influenced by the material composition of the concrete, and that it can be evidently influenced by casting the concrete in layers.
基金supported by the National Natural Science Foundation of China (60971083)the Hi-Tech Research and Development Program of China (2009AA01Z206)the National International Science and Technology Cooperation Project (2010DFA11320)
文摘This paper puts forward a novel cognitive cross-layer design algorithms for multihop wireless networks optimization across physical,mediam access control (MAC),network and transport layers.As is well known,the conventional layered-protocol architecture can not provide optimal performance for wireless networks,and cross-layer design is becoming increasingly important for improving the performance of wireless networks.In this study,we formulate a specific network utility maximization (NUM) problem that we believe is appropriate for multihop wireless networks.By using the dual algorithm,the NUM problem has been optimal decomposed and solved with a novel distributed cross-layer design algorithm from physical to transport layers.Our solution enjoys the benefits of cross-layer optimization while maintaining the simplicity and modularity of the traditional layered architecture.The proposed cross-layer design can guarantee the end-to-end goals of data flows while fully utilizing network resources.Computer simulations have evaluated an enhanced performance of the proposed algorithm at both average source rate and network throughput.Meanwhile,the proposed algorithm has low implementation complexity for practical reality.
文摘The main research objective in wireless sensor networks (WSN) domain is to develop algorithms and protocols to ensure minimal energy consumption with maximum network lifetime. In this paper, we propose a novel design for energy harvesting sensor node and cross-layered MAC protocol using three adjacent layers (Physical, MAC and Network) to economize energy for WSN. The basic idea behind our protocol is to re-energize the neighboring nodes using the radio frequency (RF) energy transmitted by the active nodes. This can be achieved by designing new energy harvesting sensor node and redesigning the MAC protocol. The results show that the proposed cross layer CL_EHSN improves the life time of the WSN by 40%.
基金the support of the National Basic Research Program(973 Program)of China(Grant No.2011CB610304)the National Natural Science Foundation of China(Grant Nos.11332004 and 11402046)+2 种基金China Postdoctoral Science Foundation(No.2015M571296)the 111 Project(B14013)the CATIC Industrial Production Projects(Grant No.CXY2013DLLG32)
文摘We present a design method for calculating and optimizing sound absorption coefficient of multi-layered porous fibrous metals (PFM) in the low frequency range. PFM is simplified as an equivalent idealized sheet with all metallic fibers aligned in one direction and distributed in periodic hexagonal patterns. We use a phenomenological model in the literature to investigate the effects of pore geometrical parameters (fiber diameter and gap) on sound absorption performance. The sound absorption coefficient of multi- layered PFMs is calculated using impedance translation theorem, To demonstrate the validity of the present model, we compare the predicted results with the experimental data. With the average sound absorption (low frequency range) as the objective function and the fiber gaps as the design variables, an optimization method for multi-layered fibrous metals is proposed. A new fibrous layout with given porosity of multi-layered fibrous metals is suggested to achieve optimal low frequency sound absorption. The sound absorption coefficient of the optimal multi-layered fibrous metal is higher than the single- layered fibrous metal, and a significant effect of the fibrous material on sound absorption is found due to the surface Dorosity of the multi-layered fibrous.
文摘Based on analytic hierarchy process(AHP) theory,a vital important problem for top-layer planning and overall design of modern self-propelled gun-howitzer system,namely overall project decision-making,was analyzed.A hierarchy model was built to solve the complex and uncertain problem,and a decision-making index system was established.Then,the weights in all layers of the model were determined by simulating experts.Finally,according to the calculated results of the elements in each layer,the weights of the alternatives to the overall goal were calculated to conduct the hierarchy total decision.A decision example shows that the overall project of a self-propelled gun-howitzer A is much better than that of another self-propelled gun-howitzer B,digitalized in comprehensive efficiency,operability,system accuracy and economy,but inferior to it in the information capability,and there exists relatively larger gap between them in the information sharing index.
文摘This paper presents an innovative Soft Design Science Methodology for improving information systems security using multi-layered security approach. The study applied Soft Design Science Methodology to address the problematic situation on how information systems security can be improved. In addition, Soft Design Science Methodology was compounded with mixed research methodology. This holistic approach helped for research methodology triangulation. The study assessed security requirements and developed a framework for improving information systems security. The study carried out maturity level assessment to determine security status quo in the education sector in Tanzania. The study identified security requirements gap (IT security controls, IT security measures) using ISO/IEC 21827: Systems Security Engineering-Capability Maturity Model (SSE-CMM) with a rating scale of 0 - 5. The results of this study show that maturity level across security domain is 0.44 out of 5. The finding shows that the implementation of IT security controls and security measures for ensuring security goals are lacking or conducted in ad-hoc. Thus, for improving the security of information systems, organisations should implement security controls and security measures in each security domain (multi-layer security). This research provides a framework for enhancing information systems security during capturing, processing, storage and transmission of information. This research has several practical contributions. Firstly, it contributes to the body of knowledge of information systems security by providing a set of security requirements for ensuring information systems security. Secondly, it contributes empirical evidence on how information systems security can be improved. Thirdly, it contributes on the applicability of Soft Design Science Methodology on addressing the problematic situation in information systems security. The research findings can be used by decision makers and lawmakers to improve existing cyber security laws, and enact laws for data privacy and sharing of open data.