The surface layer of beryllium, specimen, has been strengthened by ion implantation. Its microhardness was measured. The hardness of surface layer has been calculated from the microhardness. The experimental data of t...The surface layer of beryllium, specimen, has been strengthened by ion implantation. Its microhardness was measured. The hardness of surface layer has been calculated from the microhardness. The experimental data of the wear rate indirectly Confirmed the reasonableness of the result of calculation. It is shown that the hardness of the surface layer strengthened, by ion implantation is nine times higher than that of beryllium itself. The relation between hardness and implantation dose was analysed and the best dose was obtained.展开更多
Size distribution of nano-carbides produced by duplex treatments of surface nanocrystallization(by surface severe plastic deformation) and plasma electrolytic carburizing on CP-Ti was investigated.Skewness and kurtosi...Size distribution of nano-carbides produced by duplex treatments of surface nanocrystallization(by surface severe plastic deformation) and plasma electrolytic carburizing on CP-Ti was investigated.Skewness and kurtosis of Gussian shape distribution curves were studied and the effect of time was determined.The usage of longer time is more suitable for achieving less size of complex nano-carbides.Surface roughness of treated samples was measured.It is observed that there is an optimum level for time on surface roughness increasing(difference between two measured data).展开更多
The difficulty of selecting appropriate rheological model and parameters for the alternating distribution of soft and hard rock layers was often encountered due to the unhomogeneity, discontinuity and anisotropy of ro...The difficulty of selecting appropriate rheological model and parameters for the alternating distribution of soft and hard rock layers was often encountered due to the unhomogeneity, discontinuity and anisotropy of rock mass. The Burgers and generalized Kelvin models were applied to the soft and hard rock respectively and the rheological parameters were obtained based on the method of optimum separation. By using the simulated code FLAC^(3D), the stability of surrounding rocks of a certain underground plant was analyzed. The effect of surface load and weakening the parameters intensity of argillaceous and bioclastic interlayers between soft and hard rock on rheological behavior of layer composite rock mass was investigated. The results indicate that the rheological characteristics of soft and hard rock layer in composite rock mass can be described well with above two rheological models.展开更多
The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as...The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials.The microstructures of surface infiltrated composite layer,the interface structures between surface composite layer and the substrate,the changes of macro-hardness with the increasing of WC content and the micro-hardness distribution are investigated.The infiltrated composite layer includes a surface composite layer and a transition layer,and the thickness of the transition layer decreases with the increasing content of WC.The thickness of transition layer with 20%WC content in the surface infiltrated composite layer was 170 μm which was the thickest for all transition layers with different WC content.The surface composite layer was mainly composed of WC,W2C,FeB and NiB,along with Ni-Cr-Fe,Ni (Cr) solid solution,Ni (Si) solid solution and Ni (Fe) solid solution.The transition layer was composed of Ni (Cr) solid solution,Ni (Fe) solid solution,Ni (Si) solid solution,Fe (Ni) solid solution and eutectic.The surface macro-hardness and micro-hardness of the infiltrated layer had been evaluated.The macro-hardness of the surface composite layer decreases with the WC content increasing,and the average macro-hardness is HRC60.The distribution of micro-hardness presents gradient change.The average micro-hardness of the infiltrated layer is about HV1000.展开更多
Acoustic emission and digital image correlation were used to study the spatiotemporal evolution characteristics of crack extension of soft and hard composite laminated rock masses(SHCLRM)containing double fissures und...Acoustic emission and digital image correlation were used to study the spatiotemporal evolution characteristics of crack extension of soft and hard composite laminated rock masses(SHCLRM)containing double fissures under uniaxial compression.The effects of different rock combination methods and prefabricated fissures with different orientations on mechanical properties and crack coalescence patterns were analyzed.The characteristics of the acoustic emission source location distribution,and frequency changes of the crack evolution process were also investigated.The test results show that the damage mode of SHCLRM is related to the combination mode of rock layers and the orientation of fractures.Hard layers predominantly produce tensile cracks;soft layers produce shear cracks.The first crack always sprouts at the tip or middle of prefabricated fractures in hard layers.The acoustic emission signal of SHCLRM with double fractures has clear stage characteristics,and the state of crack development can be inferred from this signal to provide early warning for rock fracture instability.This study can provide a reference for the assessment of the fracture development status between adjacent roadways in SHCLRM in underground mines,as well as in roadway layout and support.展开更多
It has been known that the error of measuring acoustic veloicities of thin sediment layers by the well-known T2-X2 approach is usually untolerable, and that this approach is unavailable in the case where sea-bed is ha...It has been known that the error of measuring acoustic veloicities of thin sediment layers by the well-known T2-X2 approach is usually untolerable, and that this approach is unavailable in the case where sea-bed is hard because no echo from any subsurface below sea-bottom can be received. Therefore applying the ray-parameter method to thin layers and the refraction method to hard layers need to be considered in an acoustic velocity measurement system composed of a sound source and a towed hydrophone streamer. Some problems of practical importance about the applications of the two methods, such as echo-data processing procedures and error estimations in measuring acoustic veloicities, are discussed, and the effectiveness of theoretical analyses has been verified through computer simulations.展开更多
In order to understand the high-temperature deformation behaviour of alloy having hard surface layer,thermo-mechanically treated duplex stainless steel(DSS)is boronised for 0.75-6 h at 1223 K and subsequently deformed...In order to understand the high-temperature deformation behaviour of alloy having hard surface layer,thermo-mechanically treated duplex stainless steel(DSS)is boronised for 0.75-6 h at 1223 K and subsequently deformed under compression mode at the same temperature under strain rate condition of 1×10^(-3),2×10^(-4) and 6×10^(-5) s^(-1) until strain of 0.4.The substrate microstructure is almost isotropic with grain size after boronising with layer thickness between 1.61 and 2.74μm.X-ray diffraction results confirm the formation of boride on DSS surface.The surface hardness of DSS increases from 387 to 1000-2400 HV after boronising.Uniform boronised layer with thickness of 20-40μm is formed at DSS surface.Compression results show that the flow stress of the deformation increases with the strain rate and boronising time.For the boronised samples,the flow stress range is between 5 and 89 MPa.To determine the actual effect of the boronised layer on the flow stress,the results are also compared with those from un-boronised samples having similar microstructure.The results suggest that at a constant grain size,even with the hardest layer,the effect of hard surface layer on the flow stress almost could be negligible when the deformation rate is slow,but at faster deformation rate,even in the layer with the least hardness,the flow stress shows a significant increase.It is also observed that the hard boride surface disintegration could be avoided at a sufficiently low deformation flow stress that could be attributed to superplasticity.展开更多
The effect of different surface treatments on the bonding strength of composite plates was investigated under the conditions of 400℃ and reduction ratio of 45%.Results show that the wire brush grinding treatment can ...The effect of different surface treatments on the bonding strength of composite plates was investigated under the conditions of 400℃ and reduction ratio of 45%.Results show that the wire brush grinding treatment can only eliminate the oxide film on the plate surface,but it can hardly produce a hard layer on the plate surface.The bonding effect depends on the element diffusion promoted by the close contact between the metals on both sides of the interface.After anodic oxidation,there is a hard layer on the metal surface,and the hard layer broken during the rolling process forms a mechanical occlusion at the bonding interface.However,the hard layer cannot form an effective combination with the metal at the interface,and the bonding can only occur in the fresh metal bonding area at the crack of the hard layer.The acid-alkali washing treatment can completely remove the hard layer on the surface of both alloys without increasing the surface roughness of the plate,and the metal on both sides of the interface is more closely bonded during the rolling process.The optimal bonding strength can be obtained by surface treatment of acid-alkali washing for the aluminum-magnesium hot-rolled bonding.展开更多
基金This project was suportod by Reijing Zhongguancun Associated Center of Analysis and Measurement
文摘The surface layer of beryllium, specimen, has been strengthened by ion implantation. Its microhardness was measured. The hardness of surface layer has been calculated from the microhardness. The experimental data of the wear rate indirectly Confirmed the reasonableness of the result of calculation. It is shown that the hardness of the surface layer strengthened, by ion implantation is nine times higher than that of beryllium itself. The relation between hardness and implantation dose was analysed and the best dose was obtained.
基金Partial work of this project funded by National Elite Foundation of Iran and Iranian Nanotechnology Initiative is appreciated.
文摘Size distribution of nano-carbides produced by duplex treatments of surface nanocrystallization(by surface severe plastic deformation) and plasma electrolytic carburizing on CP-Ti was investigated.Skewness and kurtosis of Gussian shape distribution curves were studied and the effect of time was determined.The usage of longer time is more suitable for achieving less size of complex nano-carbides.Surface roughness of treated samples was measured.It is observed that there is an optimum level for time on surface roughness increasing(difference between two measured data).
基金Supported by the National Natural Science Foundation of China (50374049)
文摘The difficulty of selecting appropriate rheological model and parameters for the alternating distribution of soft and hard rock layers was often encountered due to the unhomogeneity, discontinuity and anisotropy of rock mass. The Burgers and generalized Kelvin models were applied to the soft and hard rock respectively and the rheological parameters were obtained based on the method of optimum separation. By using the simulated code FLAC^(3D), the stability of surrounding rocks of a certain underground plant was analyzed. The effect of surface load and weakening the parameters intensity of argillaceous and bioclastic interlayers between soft and hard rock on rheological behavior of layer composite rock mass was investigated. The results indicate that the rheological characteristics of soft and hard rock layer in composite rock mass can be described well with above two rheological models.
基金Funded by"Xi-Bu-Zhi-Guang" Foundation of Chinese Academy of Sciences(No.XBZG-2007-5)Gansu Natural Science Foundation of China(No.0806RJYA004)Outstanding Youngth of Lanzhou University of Technology (No.Q200910)
文摘The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials.The microstructures of surface infiltrated composite layer,the interface structures between surface composite layer and the substrate,the changes of macro-hardness with the increasing of WC content and the micro-hardness distribution are investigated.The infiltrated composite layer includes a surface composite layer and a transition layer,and the thickness of the transition layer decreases with the increasing content of WC.The thickness of transition layer with 20%WC content in the surface infiltrated composite layer was 170 μm which was the thickest for all transition layers with different WC content.The surface composite layer was mainly composed of WC,W2C,FeB and NiB,along with Ni-Cr-Fe,Ni (Cr) solid solution,Ni (Si) solid solution and Ni (Fe) solid solution.The transition layer was composed of Ni (Cr) solid solution,Ni (Fe) solid solution,Ni (Si) solid solution,Fe (Ni) solid solution and eutectic.The surface macro-hardness and micro-hardness of the infiltrated layer had been evaluated.The macro-hardness of the surface composite layer decreases with the WC content increasing,and the average macro-hardness is HRC60.The distribution of micro-hardness presents gradient change.The average micro-hardness of the infiltrated layer is about HV1000.
基金This study was supported by the Natural Science Foundation of Hubei Province(No.2020CFB123)the Scientific Research Program of Hubei Education Department(No.Q20201109).
文摘Acoustic emission and digital image correlation were used to study the spatiotemporal evolution characteristics of crack extension of soft and hard composite laminated rock masses(SHCLRM)containing double fissures under uniaxial compression.The effects of different rock combination methods and prefabricated fissures with different orientations on mechanical properties and crack coalescence patterns were analyzed.The characteristics of the acoustic emission source location distribution,and frequency changes of the crack evolution process were also investigated.The test results show that the damage mode of SHCLRM is related to the combination mode of rock layers and the orientation of fractures.Hard layers predominantly produce tensile cracks;soft layers produce shear cracks.The first crack always sprouts at the tip or middle of prefabricated fractures in hard layers.The acoustic emission signal of SHCLRM with double fractures has clear stage characteristics,and the state of crack development can be inferred from this signal to provide early warning for rock fracture instability.This study can provide a reference for the assessment of the fracture development status between adjacent roadways in SHCLRM in underground mines,as well as in roadway layout and support.
文摘It has been known that the error of measuring acoustic veloicities of thin sediment layers by the well-known T2-X2 approach is usually untolerable, and that this approach is unavailable in the case where sea-bed is hard because no echo from any subsurface below sea-bottom can be received. Therefore applying the ray-parameter method to thin layers and the refraction method to hard layers need to be considered in an acoustic velocity measurement system composed of a sound source and a towed hydrophone streamer. Some problems of practical importance about the applications of the two methods, such as echo-data processing procedures and error estimations in measuring acoustic veloicities, are discussed, and the effectiveness of theoretical analyses has been verified through computer simulations.
基金financed by Postgraduate Research Grant(PPP)(Project No.PG019-2014B)from University of MalayaMalaysia and Akaun Amanah Industri Bekalan Elektrik(Project No.GAO 12-2019).
文摘In order to understand the high-temperature deformation behaviour of alloy having hard surface layer,thermo-mechanically treated duplex stainless steel(DSS)is boronised for 0.75-6 h at 1223 K and subsequently deformed under compression mode at the same temperature under strain rate condition of 1×10^(-3),2×10^(-4) and 6×10^(-5) s^(-1) until strain of 0.4.The substrate microstructure is almost isotropic with grain size after boronising with layer thickness between 1.61 and 2.74μm.X-ray diffraction results confirm the formation of boride on DSS surface.The surface hardness of DSS increases from 387 to 1000-2400 HV after boronising.Uniform boronised layer with thickness of 20-40μm is formed at DSS surface.Compression results show that the flow stress of the deformation increases with the strain rate and boronising time.For the boronised samples,the flow stress range is between 5 and 89 MPa.To determine the actual effect of the boronised layer on the flow stress,the results are also compared with those from un-boronised samples having similar microstructure.The results suggest that at a constant grain size,even with the hardest layer,the effect of hard surface layer on the flow stress almost could be negligible when the deformation rate is slow,but at faster deformation rate,even in the layer with the least hardness,the flow stress shows a significant increase.It is also observed that the hard boride surface disintegration could be avoided at a sufficiently low deformation flow stress that could be attributed to superplasticity.
基金National Key Research and Development Program(2018YFA0707300)National Natural Science Foundation of China(52075472)Hebei Natural Science Foundation(E2023203129)。
文摘The effect of different surface treatments on the bonding strength of composite plates was investigated under the conditions of 400℃ and reduction ratio of 45%.Results show that the wire brush grinding treatment can only eliminate the oxide film on the plate surface,but it can hardly produce a hard layer on the plate surface.The bonding effect depends on the element diffusion promoted by the close contact between the metals on both sides of the interface.After anodic oxidation,there is a hard layer on the metal surface,and the hard layer broken during the rolling process forms a mechanical occlusion at the bonding interface.However,the hard layer cannot form an effective combination with the metal at the interface,and the bonding can only occur in the fresh metal bonding area at the crack of the hard layer.The acid-alkali washing treatment can completely remove the hard layer on the surface of both alloys without increasing the surface roughness of the plate,and the metal on both sides of the interface is more closely bonded during the rolling process.The optimal bonding strength can be obtained by surface treatment of acid-alkali washing for the aluminum-magnesium hot-rolled bonding.