期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Few-layer Tellurium:one-dimensional-like layered elementary semiconductor with striking physical properties 被引量:14
1
作者 Jingsi Qiao Yuhao Pan +3 位作者 Feng Yang Cong Wang Yang Chai Wei Ji 《Science Bulletin》 SCIE EI CSCD 2018年第3期159-168,共10页
Few-layer Tellurium, an elementary semiconductor, succeeds most of striking physical properties that black phosphorus(BP) offers and could be feasibly synthesized by simple solution-based methods. It is comprised of n... Few-layer Tellurium, an elementary semiconductor, succeeds most of striking physical properties that black phosphorus(BP) offers and could be feasibly synthesized by simple solution-based methods. It is comprised of non-covalently bound parallel Te chains, among which covalent-like feature appears.This feature is, we believe, another demonstration of the previously found covalent-like quasi-bonding(CLQB) where wavefunction hybridization does occur. The strength of this inter-chain CLQB is comparable with that of intra-chain covalent bonding, leading to closed stability of several Te allotropes. It also introduces a tunable bandgap varying from nearly direct 0.31 eV(bulk) to indirect 1.17 eV(2L) and four(two) complex, highly anisotropic and layer-dependent hole(electron) pockets in the first Brillouin zone.It also exhibits an extraordinarily high hole mobility(~10~5 cm^2/Vs) and strong optical absorption along the non-covalently bound direction, nearly isotropic and layer-dependent optical properties, large ideal strength over 20%, better environmental stability than BP and unusual crossover of force constants for interlayer shear and breathing modes. All these results manifest that the few-layer Te is an extraordinary-high-mobility, high optical absorption, intrinsic-anisotropy, low-cost-fabrication, tunable bandgap, better environmental stability and nearly direct bandgap semiconductor. This ‘‘one-dimen sion-like" few-layer Te, together with other geometrically similar layered materials, may promote the emergence of a new family of layered materials. 展开更多
关键词 Two-dimensional systems First-principles calculations Tellurium High carrier mobility Covalent-like quasi-bonding One-dimension-like layered materials
原文传递
Fabrication of Zn-Ti layered double hydroxide by varying cationic ratio of Ti^(4+) and its application as UV absorbent 被引量:5
2
作者 Xin-Rui Wang Yong Li +4 位作者 Li-Ping Tang Wen Gan Wei Zhou Yu-Fei Zhao Dong-Sheng Bai 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第2期394-399,共6页
ZnTi-layered double hydroxides(LDHs) with varying Zn/Ti ratio have been synthesized by coprecipitation of zinc and titanium salts from homogeneous solution.The obtained ZnTi-LDHs possess high crystallinity and hiera... ZnTi-layered double hydroxides(LDHs) with varying Zn/Ti ratio have been synthesized by coprecipitation of zinc and titanium salts from homogeneous solution.The obtained ZnTi-LDHs possess high crystallinity and hierarchical structure with improved UV-absorbance property.The UV-vis spectra show that the UV absorbing properties of ZnTi-LDHs is stronger and broader than both MgAl-LDH and ZnAl-LDH due to the existence of Ti.Moreover,the UV absorption property increased with the content of Ti,which can be ascribed to the decrease in the band gap energy,as clearly confirmed by density functional theory calculations.When irradiated by UV rays,the property of the samples with generated free radicals(OH^·and O2^·) was evaluated by means of electron spin resonance(EPR).ZnTi-LDHs generated a relatively lower active radicals in contrast with TiO2 and ZnO,which implied an increased safety used as sunscreens.Therefore,this work provides a detailed understanding of UV shielding properties of ZnTiLDHs which was unrevealed previously,and demonstrates the expansive application prospects of ZnTiLDHs in the field of sunscreens. 展开更多
关键词 layered double hydroxide UV absorbent Density functional theory calculations Photoactivity Band gap
原文传递
Density functional theory study on the influence of cation ratio on the host layer structure of Zn/Al double hydroxides 被引量:1
3
作者 Hong Yan Min Wei +1 位作者 Jing Ma Xue Duan 《Particuology》 SCIE EI CAS CSCD 2010年第3期212-220,共9页
A density functional theory (DFT) study has been carried out for [Zn-1AI(OH2)n+6(OH)2n-2]^3+ (n=3-6) and [Znn-1AI(OH2)2n-2(OH)2n-2]^3+ (n = 7) clusters, which include the basic structural information ... A density functional theory (DFT) study has been carried out for [Zn-1AI(OH2)n+6(OH)2n-2]^3+ (n=3-6) and [Znn-1AI(OH2)2n-2(OH)2n-2]^3+ (n = 7) clusters, which include the basic structural information of the brucite-like lattice structure of Zn/Al layered double hydroxides (LDHs) with Zn/AI molar ratio (R) in the range 2-6, in order to understand the effect of the Zn/Al ratio on the structure and stability of binary Zn/Al LDHs. Based on systematic calculations of the geometric parameters and formation energies of the cluster models, it was found that it is possible for Zn^2+ and Al^3+ cations to replace Mg^2+ isomorphously in the brucite-like structure with different R values, resulting in differences in microstructure of the clusters and unit cell parameter a of the Zn/Al LDHs. Analysis of the geometry and bonding around the trivalent Al^3+ or divalent Zn^2+ cations reveals that Al^3+ plays a more significant role than Zn^2+ in determining the microstructure properties, formation and bonding stability of the corresponding ZnRAl clusters when R〈5, while the influence of Zn^2+ becomes the dominant factor in the case of R〉 5. These findings are in good agreement with experiments. This work provides a detailed electronic-level understanding of how the composition of cations affects the microstructure and stability of Zn-containing binary LDH layers. 展开更多
关键词 layered double hydroxide Zn/Al molar ratio Density functional calculation Microstructure Formation and bonding stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部