期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Turbulent boundary layer control with DBD plasma actuators
1
作者 李跃强 武斌 +3 位作者 高超 郑海波 王玉帅 严日华 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第4期184-194,共11页
The flat-plate turbulent boundary layer at Reτ=1140 is manipulated using a spanwise array of bidirectional dielectric barrier discharge(DBD)plasma actuators.Based on the features of no moving mechanical parts in the ... The flat-plate turbulent boundary layer at Reτ=1140 is manipulated using a spanwise array of bidirectional dielectric barrier discharge(DBD)plasma actuators.Based on the features of no moving mechanical parts in the DBD plasma control technology and hot-wire anemometer velocity measurements,a novel convenient method of local drag reduction(DR)measurement is proposed by measuring the single-point velocity within the linear region of the viscous sublayer.We analyze the premise of using the method,and the maximum effective measurement range of-73.1%<DR<42.2%is obtained according to the experimental environment in this work.The local drag decreases downstream of the center of two adjacent upper electrodes and increases downstream of the upper electrodes.The magnitude of the local DR increases with increasing voltage and decreases as it moves away from the actuators.For the spanwise position in between,the streamwise distribution of the local DR is very dependent on the voltage.The variable-interval time-average detection results reveal that all bursting intensities are reduced compared to the baseline,and the amount of reduction is comparable to the absolute values of the local DR.Compared with previous results,we infer that the control mechanism is that many meandering streaks are combined together into single stabilized streaks. 展开更多
关键词 turbulent boundary layer control DBD plasma actuators drag reduction measurement
下载PDF
Review:Layer⁃Number Controllable Preparation of High⁃Quality Graphene for Wide Applications 被引量:2
2
作者 Yun⁃Bin Xie Mei⁃Rong Huang Xin⁃Gui Li 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第3期136-157,共22页
Graphene, a well-known two-dimensional(2 D) material, has sparked broad enthusiasm in both scientific and industrial communities in these years, due to its exceptional electrical, thermal, mechanical, and versatile pr... Graphene, a well-known two-dimensional(2 D) material, has sparked broad enthusiasm in both scientific and industrial communities in these years, due to its exceptional electrical, thermal, mechanical, and versatile properties. However, many properties and applications of graphene are layer-number dependent. The preparation of high-quality graphene with controlled layer numbers is full of challenge, since the layer number varies much with the synthesis routes and relevant experimental conditions. Hence, there is an urgent need to improve the layer-number controllability of graphene preparation. Generally, graphene can be prepared by two complementary approaches: "top-down" and "bottom-up". Since they have their own advantages, the recent advances in the layer-number tunable preparation of high-quality graphene are separately studied from the two aspects in this review, especially those dedicated to single parameter. Some effective strategies are discussed in detail, mainly including 1) supercritical-CO2 assisted sonication, electrochemical exfoliation of graphite intercalation compounds, and layer-by-layer thinning with plasma or laser, for "top-down" graphene;2) chemical vapor deposition(CVD) on dual-metal substrate, ion-implantation CVD, layer-by-layer CVD, plasma-enhanced CVD, layered-double-hydroxides template-assisted CVD;and 3) graphite-enclosure assisted epitaxial growth and pulsed-magnetron-sputtering assisted physical vapor deposition for "bottom-up" graphene on various substrates. In addition, the respective advantages of graphene with different layer numbers in properties and applications are also presented. Finally, the contribution concludes with some important perspectives on the remained challenges and future perspectives. 展开更多
关键词 GRAPHENE nanosheet preparation controllable layer number tunable morphology high quality graphene
下载PDF
Turbulent boundary layer control with a spanwise array of DBD plasma actuators 被引量:2
3
作者 李跃强 高超 +4 位作者 武斌 王玉帅 郑海波 薛明 王玉玲 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第2期30-37,共8页
The turbulent boundary layer control on NACA 0012 airfoil with Mach number ranging from 0.3 to 0.5 by a spanwise array of dielectric barrier discharge(DBD)plasma actuators by hot-film sensor technology is investigated... The turbulent boundary layer control on NACA 0012 airfoil with Mach number ranging from 0.3 to 0.5 by a spanwise array of dielectric barrier discharge(DBD)plasma actuators by hot-film sensor technology is investigated.Due to temperature change mainly caused through heat produced along with plasma will lead to measurement error of shear stress measured by hot-film sensor,the correction method that takes account of the change measured by another sensor is used and works well.In order to achieve the value of shear stress change,we combine computational fluid dynamics computation with experiment to calibrate the hot-film sensor.To test the stability of the hot-film sensor,seven repeated measurements of shear stress at Ma=0.3 are conducted and show that confidence interval of hot-film sensor measurement is from−0.18 to 0.18 Pa and the root mean square is 0.11 Pa giving a relative error 0.5%over all Mach numbers in this experiment.The research on the turbulent boundary layer control with DBD plasma actuators demonstrates that the control makes shear stress increase by about 6%over the three Mach numbers,which is thought to be reliable through comparing it with the relative error 0.5%,and the value is hardly affected by burst frequency and excitation voltage. 展开更多
关键词 turbulent boundary layer control DBD plasma actuators hot-film sensor
下载PDF
Optimizing intrinsic cocatalyst activity and light absorption efficiency for efficient hydrogen evolution of 1D/2D ReS_(2)-CdS photocatalysts via control of ReS_(2)nanosheet layer growth
4
作者 Ghufran Aulia Bin Azizar Jong Wook Hong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第1期103-113,共11页
The visible-light-driven hydrogen evolution is extremely important,but the poor charge transfer capa-bility,a sluggish evolution rate of hydrogen,and severe photo-corrosion make photocatalytic hydrogen evolution impra... The visible-light-driven hydrogen evolution is extremely important,but the poor charge transfer capa-bility,a sluggish evolution rate of hydrogen,and severe photo-corrosion make photocatalytic hydrogen evolution impractical.In this study,we present 1D/2D ReS_(2)-CdS hybrid nanorods for photocatalytic hy-drogen evolution,comprised of a ReS_(2)nanosheet layer grown on CdS nanorods.We found that precise control of the contents of the ReS_(2)nanosheet layer allows for manipulating the electronic structure of Re in the ReS_(2)-CdS hybrid nanorods.The ReS_(2)-CdS hybrid nanorods with optimal ReS_(2)nanosheet layer content dramatically improve photocatalytic hydrogen evolution activity.Notably,photocatalytic hydro-gen evolution activity(64.93 mmol g^(−1)h^(−1))of ReS_(2)-CdS hybrid nanorods with ReS_(2)nanosheet layers(Re/Cd atomic ratio of 0.051)is approximately 136 times higher than that of pure CdS nanorods under visible light irradiation.Furthermore,intimated coupling of the ReS_(2)nanosheet layer with CdS nanorods reduced the surface trap-site of the CdS nanorods,resulting in enhanced photocatalytic stability.The de-tailed optical and electrical investigations demonstrate that the optimal ReS_(2)nanosheet layer contents in the ReS_(2)-CdS hybrid nanorods can provide improved charge transfer capability,catalytic activity,and light absorption efficiency.This study sheds light on the development of photocatalysts for highly efficient photocatalytic hydrogen evolution. 展开更多
关键词 Photocatalyst Hydrogen evolution reaction ReS_(2)-CdS heterostructure control of ReS_(2)nanosheet layer growth Optimization of cocatalyst activity and light absorption
原文传递
A Model Predictive Control Method for Hybrid Energy Storage Systems 被引量:1
5
作者 Siyuan Chen Qiufan Yang +1 位作者 Jianyu Zhou Xia Chen 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第2期329-338,共10页
The traditional PI controller for a hybrid energy storage system(HESS)has certain drawbacks,such as difficult tuning of the controller parameters and the additional filters to allocate high-and low-frequency power flu... The traditional PI controller for a hybrid energy storage system(HESS)has certain drawbacks,such as difficult tuning of the controller parameters and the additional filters to allocate high-and low-frequency power fluctuations.This paper proposes a model predictive control(MPC)method to control three-level bidirectional DC/DC converters for grid-connections to a HESS in a DC microgrid.First,the mathematical model of a HESS consisting of a battery and ultra capacitor(UC)is established and the neutral point voltage imbalance of a three-level converter is solved by analyzing the operating modes of the converter.Secondly,for the control of the grid-connected converters,an MPC method is proposed for calculating steady-state reference values in the outer layer and the dynamic rolling optimization in the inner layer.The outer layer ensures the voltage regulation and establishes the current predictive model,while the inner layer,using the model predictive current control,makes the current follow the predictive value,thus reducing the system current ripple.This cascaded topology has two independent controllers and is free of filters to realize the high-and low-frequency power allocation for a HESS.Therefore,it allows two types of energy storage devices to independently regulate the voltage and realizes the power allocation of the battery and UC.Finally,simulation studies are conducted in PSCAD/EMTDC,and the effectiveness of the proposed HESS control strategy is verified in a case,such as a controller comparison and fault scenario. 展开更多
关键词 Double layer control method hybrid energy storage system(HESS) model predictive control(MPC) three-level DC/DC converter
原文传递
Quantifying a critical marl thickness for vertical fracture extension using field data and numerical experiments 被引量:1
6
作者 Filiz Afsar Elco Luijendijk 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第6期2135-2145,共11页
In fractured reservoirs characterized by low matrix permeability,fracture networks control the main fluid flow paths.However,in layered reservoirs,the vertical extension of fractures is often restricted to single laye... In fractured reservoirs characterized by low matrix permeability,fracture networks control the main fluid flow paths.However,in layered reservoirs,the vertical extension of fractures is often restricted to single layers.In this study,we explored the effect of changing marl/shale thickness on fracture extension using comprehensive field data and numerical modeling.The field data were sampled from coastal exposures of Liassic limestone-marl/shale alternations in Wales and Somerset(Bristol Channel Basin,UK).The vertical fracture traces of more than 4000 fractures were mapped in detail.Six sections were selected to represent a variety of layer thicknesses.Besides the field data also thin sections were analyzed.Numerical models of fracture extension in a two-layer limestone-marl system were based on field data and laboratory measurements of Young's moduli.The modeled principal stress magnitude σ3 along the lithological contact was used as an indication for fracture extension through marls.Field data exhibit good correlation(R^2=0.76) between fracture extension and marl thickness,the thicker the marl layer the fewer fractures propagate through.The model results show that almost no tensile stress reaches the top of the marl layer when the marls are thicker than 30 cm.For marls that are less than 20 cm,the propagation of stress is more dependent on the stiffness of the marls.The higher the contrast between limestone and marl stiffness the lower the stress that is transmitted into the marl layer.In both model experiments and field data the critical marl thickness for fracture extension is ca.15-20 cm.This quantification of critical marl thicknesses can be used to improve predictions of fracture networks and permeability in layered rocks.Up-or downsampling methods often ignore spatially continuous impermeable layers with thicknesses that are under the detection limit of seismic data.However,ignoring these layers can lead to overestimates of the overall permeability.Therefore,the understanding of how fractures propagate and terminate through impermeable layers will help to improve the characterization of conventional reservoirs. 展开更多
关键词 Boundary element modelling Marl/limestone multilayer Layer thickness and stiffness control PERMEABILITY Fractured reservoirs
下载PDF
Turbulent drag reduction by spanwise slot blowing pulsed plasma actuation
7
作者 郑博睿 金元中 +3 位作者 喻明浩 李跃强 武斌 陈全龙 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第11期26-36,共11页
This work studies the turbulent drag reduction(TDR)effect of a flat plate model using a spanwise slot blowing pulsed plasma actuator(SBP-PA).Wind tunnel experiments are carried out under a Reynolds number of 1.445... This work studies the turbulent drag reduction(TDR)effect of a flat plate model using a spanwise slot blowing pulsed plasma actuator(SBP-PA).Wind tunnel experiments are carried out under a Reynolds number of 1.445×10^(4).Using a hot-wire anemometer and an electrical data acquisition system,the influences of millisecond pulsed plasma actuation with different burst frequencies and duty cycles on the microscale coherent structures near the wall of the turbulent boundary layer(TBL)are studied.The experimental results show that the SBP-PA can effectively reduce the frictional drag of the TBL.When the duty cycle exceeds 30%,the TDR rate is greater than 11%,and the optimal drag reduction rate of 13.69%is obtained at a duty cycle of 50%.Furthermore,optimizing the electrical parameters reveals that increasing the burst frequency significantly reduces the velocity distribution in the logarithmic region of the TBL.When the normalized burst frequency reaches f+=2πf_(p)d/U_(∞)=7.196,the optimal TDR effectiveness is 16.97%,indicating a resonance phenomenon between the pulsed plasma actuation and the microscale coherent structures near the wall.Therefore,reasonably selecting the electrical parameters of the plasma actuator is expected to significantly improve the TDR effect. 展开更多
关键词 turbulent boundary layer control plasma flow control HOT-WIRE turbulent frictional drag turbulent drag reduction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部