In this paper, a model of transversely isotropic elastic strata is used to simulate the soil layers situated on a half space. Instead of the half space, an artificial transmitting boundary is used to absorb the vibrat...In this paper, a model of transversely isotropic elastic strata is used to simulate the soil layers situated on a half space. Instead of the half space, an artificial transmitting boundary is used to absorb the vibration energy. The displacement formulas at any soil layer interface under vertical or horizontal harmonic ring loads are obtained by using the thin layer element method. From these formulas, the explicit solutions of Green's functions_the displacement responses at any interface of these strata under vertical and horizon harmonic point loads_are derived. The examples show that the method presented in this paper is close to the theoretical method and the transversely isotropic property has evident influence on the Green's functions.展开更多
文摘In this paper, a model of transversely isotropic elastic strata is used to simulate the soil layers situated on a half space. Instead of the half space, an artificial transmitting boundary is used to absorb the vibration energy. The displacement formulas at any soil layer interface under vertical or horizontal harmonic ring loads are obtained by using the thin layer element method. From these formulas, the explicit solutions of Green's functions_the displacement responses at any interface of these strata under vertical and horizon harmonic point loads_are derived. The examples show that the method presented in this paper is close to the theoretical method and the transversely isotropic property has evident influence on the Green's functions.