High-density electrical method has been proved to be an effective method for probing shallow sedimentary layers.It is principally used to identify the boundary between the Quaternary soil layer and bedrock according t...High-density electrical method has been proved to be an effective method for probing shallow sedimentary layers.It is principally used to identify the boundary between the Quaternary soil layer and bedrock according to the vertical change of apparent resistivity.However,the artificial filling layer has the characteristics of heterogeneity and high porosity,which makes it challenging to detect the artificial filling layer by high-density electrical method.The key to solve this problem is to detect the difference of conductivity between the filling layer and the underlying bedrock.This paper takes the land in Chengjiangshan area of Huaibei City,Anhui Province as the detection target.On the basis of fully analyzing the physical properties of the artificial filling layer,two-dimensional high-density electrical survey and inversion are used to define the thickness of the artificial filling layer.The research shows that the highdensity resistivity method has obvious advantages in delineating the distribution of bedrock and the thickness of the filling layer,and the reliability of the high-density electrical method in the detection of the artificial filling layer,and delineates the scope of the filling layer is verified by the borehole data.展开更多
In order to study the permeability and water-resisting ability of the strata on the top of the Ordovician in Longgu Coal Mine, this paper tested the permeability and porosity of the strata, investigated the fracture a...In order to study the permeability and water-resisting ability of the strata on the top of the Ordovician in Longgu Coal Mine, this paper tested the permeability and porosity of the strata, investigated the fracture and pore structure features of the strata, and identified the main channels which govern the permeability and water-resisting ability of the strata. The permeability of the upper, central and lower strata shows as 2.0504 × 10^-3-2.782762× 10^-3, 4.1092 × 10^-3 -7.3387 × 10^-3 and 2.0891 ×10^-3-3.2705 × 10-3 μm^2, respectively, and porosity of that is 0.6786-0.9197%, 0.3109-0.3951% and 0.9829-1.8655%, respectively. The results indicate that: (I) the main channels of the relative water-resisting layer are the pore throats with a diameter more than 6 μm; (2) the major proportion of pore throats in the vertical flow channel and the permeability first increases and then sharply decreases; (3) the fractures occurring from the top to 20 m in depth of the strata were filled and there occurred almost no fracture under the depth of 40 m; and (4) the ratio of turning point of the main flow channel in the strata on top of Ordovician can be used to confirm the thickness of filled water-resisting lavers.展开更多
The immersed tunnel is considered an effective solution for traffic problems across rivers and seas.The sand filling layer,as an important part of immersed tunnel foundation treatments,directly affects segment attitud...The immersed tunnel is considered an effective solution for traffic problems across rivers and seas.The sand filling layer,as an important part of immersed tunnel foundation treatments,directly affects segment attitude stability.Due to difficulties in quality control of concealed construction and the complex hydrodynamic environment,the sand filling layer is prone to compaction defects,further leading to changes in segment attitude.However,limited by structural concealment and state complexity,most studies consider the sand filling layer part of the foundation to study its impact on settlement while neglecting its influence on segment attitude.This research proposes an evaluation method for the sand filling layer state based on elastic wave testing and the elastic wave characteristic parameters selected come from analysis of the time domain,frequency domain and time–frequency domain.By classifying the elastic wave characteristic parameters through the K-means clustering method,the relationship between the state of the sand filling layer and the elastic wave characteristic parameters is established.The state of the sand filling layer is divided into dense,incompact,and void.A numerical model is established based on the Guangzhou BI-UT immersed tunnel with incompact and void sand filling layer states to simulate deformation and torsion.The results indicate that the settlement of the tunnel segment is low in the eastern region and high in the western region due to the presence of a less dense sand filling layer,with a maximum differential settlement of 0.04 m.The evaluation method plays a crucial role in guiding the construction of immersed tube tunnels.展开更多
文摘High-density electrical method has been proved to be an effective method for probing shallow sedimentary layers.It is principally used to identify the boundary between the Quaternary soil layer and bedrock according to the vertical change of apparent resistivity.However,the artificial filling layer has the characteristics of heterogeneity and high porosity,which makes it challenging to detect the artificial filling layer by high-density electrical method.The key to solve this problem is to detect the difference of conductivity between the filling layer and the underlying bedrock.This paper takes the land in Chengjiangshan area of Huaibei City,Anhui Province as the detection target.On the basis of fully analyzing the physical properties of the artificial filling layer,two-dimensional high-density electrical survey and inversion are used to define the thickness of the artificial filling layer.The research shows that the highdensity resistivity method has obvious advantages in delineating the distribution of bedrock and the thickness of the filling layer,and the reliability of the high-density electrical method in the detection of the artificial filling layer,and delineates the scope of the filling layer is verified by the borehole data.
基金Financial supports for this work provided by the National Basic Research Program of China(2013CB227900)the Innovation of Graduate Student Training Project in Jiangsu Province of China(CXZZ13_0934)
文摘In order to study the permeability and water-resisting ability of the strata on the top of the Ordovician in Longgu Coal Mine, this paper tested the permeability and porosity of the strata, investigated the fracture and pore structure features of the strata, and identified the main channels which govern the permeability and water-resisting ability of the strata. The permeability of the upper, central and lower strata shows as 2.0504 × 10^-3-2.782762× 10^-3, 4.1092 × 10^-3 -7.3387 × 10^-3 and 2.0891 ×10^-3-3.2705 × 10-3 μm^2, respectively, and porosity of that is 0.6786-0.9197%, 0.3109-0.3951% and 0.9829-1.8655%, respectively. The results indicate that: (I) the main channels of the relative water-resisting layer are the pore throats with a diameter more than 6 μm; (2) the major proportion of pore throats in the vertical flow channel and the permeability first increases and then sharply decreases; (3) the fractures occurring from the top to 20 m in depth of the strata were filled and there occurred almost no fracture under the depth of 40 m; and (4) the ratio of turning point of the main flow channel in the strata on top of Ordovician can be used to confirm the thickness of filled water-resisting lavers.
基金supported by Yunnan Province Major Science and Technology Special Plan(Grant No.202303AA080010)the National Natural Science Foundation of China(Grant No.52122110)+1 种基金the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University,China(Grant No.SL2021PT302)Academician Special Program of China Communications Construction Company(CCCC).
文摘The immersed tunnel is considered an effective solution for traffic problems across rivers and seas.The sand filling layer,as an important part of immersed tunnel foundation treatments,directly affects segment attitude stability.Due to difficulties in quality control of concealed construction and the complex hydrodynamic environment,the sand filling layer is prone to compaction defects,further leading to changes in segment attitude.However,limited by structural concealment and state complexity,most studies consider the sand filling layer part of the foundation to study its impact on settlement while neglecting its influence on segment attitude.This research proposes an evaluation method for the sand filling layer state based on elastic wave testing and the elastic wave characteristic parameters selected come from analysis of the time domain,frequency domain and time–frequency domain.By classifying the elastic wave characteristic parameters through the K-means clustering method,the relationship between the state of the sand filling layer and the elastic wave characteristic parameters is established.The state of the sand filling layer is divided into dense,incompact,and void.A numerical model is established based on the Guangzhou BI-UT immersed tunnel with incompact and void sand filling layer states to simulate deformation and torsion.The results indicate that the settlement of the tunnel segment is low in the eastern region and high in the western region due to the presence of a less dense sand filling layer,with a maximum differential settlement of 0.04 m.The evaluation method plays a crucial role in guiding the construction of immersed tube tunnels.