Lightweight,high-efficiency and low reflection electromagnetic interference(EMI)shielding polymer composites are greatly desired for addressing the challenge of ever-increasing electromagnetic pollution.Lightweight la...Lightweight,high-efficiency and low reflection electromagnetic interference(EMI)shielding polymer composites are greatly desired for addressing the challenge of ever-increasing electromagnetic pollution.Lightweight layered foam/film PVDF nanocomposites with efficient EMI shielding effectiveness and ultralow reflection power were fabricated by physical foaming.The unique layered foam/film structure was composed of PVDF/SiCnw/MXene(Ti_(3)C_(2)Tx)composite foam as absorption layer and highly conductive PVDF/MWCNT/GnPs composite film as a reflection layer.The foam layer with numerous heterogeneous interfaces developed between the SiC nanowires(SiCnw)and 2D MXene nanosheets imparted superior EM wave attenuation capability.Furthermore,the microcellular structure effectively tuned the impedance matching and prolonged the wave propagating path by internal scattering and multiple reflections.Meanwhile,the highly conductive PVDF/MWCNT/GnPs composite(~220 S m^(−1))exhibited superior reflectivity(R)of 0.95.The tailored structure in the layered foam/film PVDF nanocomposite exhibited an EMI SE of 32.6 dB and a low reflection bandwidth of 4 GHz(R<0.1)over the Kuband(12.4-18.0 GHz)at a thickness of 1.95 mm.A peak SER of 3.1×10^(-4) dB was obtained which corresponds to only 0.0022% reflection efficiency.In consequence,this study introduces a feasible approach to develop lightweight,high-efficiency EMI shielding materials with ultralow reflection for emerging applications.展开更多
We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hex...We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester(PCBM). 1% vanadium-doped TiO2nanoparticles were synthesized via the solvothermal method. Crystalline structure, morphology, and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction, scanning electron microscopy, transmittance electron microscopy, and UV–visible transmission spectrum. The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm. The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm. The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm^2 compared with its pure counterpart. In the cells using 60 nm pure and vanadium-doped TiO2 layers, the cell using the doped layer showed much higher efficiency. It is remarkable that the external quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths.展开更多
In this paper, the cross sectional microstructure and crystal structure of ion plated multi layer films of stainless steel (1Cr18Ni9Ti ) were studied by cross sectional transmission electron microscopy (XTEM). The re...In this paper, the cross sectional microstructure and crystal structure of ion plated multi layer films of stainless steel (1Cr18Ni9Ti ) were studied by cross sectional transmission electron microscopy (XTEM). The results show that ion plated stainless steel multi layer films are fine grained double phase steel films of austenites and ferrites.Cross section film growing microstructures can be divided into three zones: fine equiaxed crystals, fine columnar crystals and coarse columnar crystals. Interfaces in multi layer films can promote fine grained growing and interrupt columnar grained growing,and improve properties of film materials.展开更多
Sensitive magnetic field sensor with good performances can be fabricated utilizing the giant magneto-impedance (GMI) effect of soft magnetic multi-layer thin films. The transverse and longitudinal GMI effect in patter...Sensitive magnetic field sensor with good performances can be fabricated utilizing the giant magneto-impedance (GMI) effect of soft magnetic multi-layer thin films. The transverse and longitudinal GMI effect in patterned FeSiB/Cu/FeSiB tri-layer films with the change of external magnetic field and frequency were studied at the same time. The change of the impedance of the films with the external magnetic fieldand frequency was shown. Comparing the longitudinal and transverse effect, the transverse effect has a larger linear range from zero magnetic field to a quite large magnetic field at all frequencies, and the change still were not saturated until the external magnetic field reached 1.2×104A/m, which illustrated that the films can be utilized to detect larger magnetic fields than now presented GMI sensors.展开更多
Polycrystalline diamond films have been synthesized on various substrates by hot filament CVD from the mixture gases of methane and hydrogen. The interface layers between CVD diamond films and substrates have been inv...Polycrystalline diamond films have been synthesized on various substrates by hot filament CVD from the mixture gases of methane and hydrogen. The interface layers between CVD diamond films and substrates have been investigated by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). In addition, visible luminescence between 2.0~3.5eV of undoped and boron-doped CVD diamond films has also been studied by cathodoluminescence.展开更多
From different reports, it (AZO) and indium-doped including usage areas. We nanocrystalline films with is realized that there is a need to consider all sides of aluminum-doped zinc oxide zinc oxide (IZO) thin film...From different reports, it (AZO) and indium-doped including usage areas. We nanocrystalline films with is realized that there is a need to consider all sides of aluminum-doped zinc oxide zinc oxide (IZO) thin films with their optical, luminescence and surface properties establish an assessment to carry out further information to summarize AZO and IZO impact of the layer number.展开更多
The optical parameters for three samples of intrinsic, doped Si and doped Mg (Al x Ga 1- x ) y In 1- y P prepared by the MOCVD on GaAs substrate were measured by using ellipsometry and were calc...The optical parameters for three samples of intrinsic, doped Si and doped Mg (Al x Ga 1- x ) y In 1- y P prepared by the MOCVD on GaAs substrate were measured by using ellipsometry and were calculated by the two-layer absorption film model. The results obtained were discussed. The grown rates and thickness of oxidic layer on the intrinsic (Al x Ga 1- x ) y In 1- y P surface exposed in the atmosphere were studied. A linear dependence of oxidic layer thickness on the time was obtained.展开更多
We present a systematic analysis of the exciton-recombination zone within all-quantum-dot (QD) multilayer films using sensing QD layers in QD-based light-emitting diodes (QLEDs), and demonstrate the a11-QD multila...We present a systematic analysis of the exciton-recombination zone within all-quantum-dot (QD) multilayer films using sensing QD layers in QD-based light-emitting diodes (QLEDs), and demonstrate the a11-QD multilayer films with different sequences of layers prepared by inserting a sensing blue QD layer denoted as B at various positions within four red QD multilayers denoted as R. We also use different hole transporting layers (PVK, CBP as well as poly-TPD) to prevent the formation of leakage current and to improve the luminance. The results show that the total EL emission is mostly at the fourth (60%) and fifth (40%) QD monolayers, adjacent to ITO. This presents both decreasing current density and increasing brightness with different hole transporting layers, thus resulting in more efficient performance.展开更多
Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env...Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.展开更多
AIM: To investigate the effects of different concentrations of artificial tears on lipid layer thickness (LLT) and blink rate (BR) in dry eye patients. METHODS: This study included 106 eyes of 58 patients with ...AIM: To investigate the effects of different concentrations of artificial tears on lipid layer thickness (LLT) and blink rate (BR) in dry eye patients. METHODS: This study included 106 eyes of 58 patients with dry eye. The lipid deficiency type was defined as the LLT baseline 〈75 nm. The LLT and BR were measured at baseline and 1, 5 and 15min after the instillation of 0.1% or 0.3% sodium hyaluronate (SH) eye drops by using the LipiView ocular surface interferometer. RESULTS: In the lipid deficiency group, the LLT increased from baseline at 1rain post instillation. The LLT after the instillation of 0.1% SH was significantly higher than that after the instillation of 0.3% SH (P〈0.001). The LLT returned to baseline at 15min post instillation of 0.1% SH and at 5min post instillation of 0.3% SH. In the non-lipid deficiency group, the LLT decreased from baseline at lmin and returned to baseline at 5rain for both treatments. The BRs were not significantly different at different time points for both treatments. CONCLUSION: SH eye drops induce a short-term increase in LLT of patients with lipid deficiency. A low concentration of artificial tears have a stronger effect than a high concentration of artificial tears on the increase in LLT. in comparison, SH eye drops induce a transient and slight decrease in LLT of patients without lipid deficiency. A low concentration of artificial tears might be better for patients with lipid deficiency.展开更多
The deposition of high-quality diamond films and their adhesion on cemented carbides are strongly influenced by the catalytic effect of cobalt under typical deposition conditions. Decreasing Co content on the surface...The deposition of high-quality diamond films and their adhesion on cemented carbides are strongly influenced by the catalytic effect of cobalt under typical deposition conditions. Decreasing Co content on the surface of the cemented carbide is often used for the diamond film deposition. But the leaching of Co from the WC-Co substrate leading to a mechanical weak surface often causes a poor adhesion. In this paper we adopted an implant copper layer prepared by vaporization to improve the mechanical properties of the Co-leached substrate. The diamond films were grown by microwave plasma chemical vapor deposition from CH4:H2 gas mixture. The cross section and the morphology of the diamond film were characterized by scanning electron microscopy (SEM). The non-diamond content in the film was analyzed by Raman spectroscopy. The effects of pretreatment on the concentrations of Co and Cu near the interfacial region were examined by energy dispersive spectrum (EDS) equipped with SEM. The adhesion of the diamond on the substrate was evaluated with a Rockwell-type hardness tester. The results indicate that the diamond films prepared with implant copper layer have a good adhesion to the cemented carbide substrate due to the recovery of the mechanical properties of the Co-depleted substrate after the copper implantation and the formation of less amorphous carbon between the substrate and the diamond film.展开更多
Twisting the stacking of layered materials leads to rich new physics. A three-dimensional topological insulator film hosts two-dimensional gapless Dirac electrons on top and bottom surfaces, which, when the film is be...Twisting the stacking of layered materials leads to rich new physics. A three-dimensional topological insulator film hosts two-dimensional gapless Dirac electrons on top and bottom surfaces, which, when the film is below some critical thickness, will hybridize and open a gap in the surface state structure. The hybridization gap can be tuned by various parameters such as film thickness and inversion symmetry, according to the literature. The three-dimensional strong topological insulator Bi(Sb)Se(Te) family has layered structures composed of quintuple layers(QLs) stacked together by van der Waals interaction. Here we successfully grow twistedly stacked Sb_2Te_3 QLs and investigate the effect of twist angels on the hybridization gaps below the thickness limit. It is found that the hybridization gap can be tuned for films of three QLs, which may lead to quantum spin Hall states.Signatures of gap-closing are found in 3-QL films. The successful in situ application of this approach opens a new route to search for exotic physics in topological insulators.展开更多
The exchange bias (EB) has been investigated in magnetic materials with the ferromagnetic (FM)/antiferromagnetic (AFM) contacting interfaces for more than half a century. To date, the significant progress has be...The exchange bias (EB) has been investigated in magnetic materials with the ferromagnetic (FM)/antiferromagnetic (AFM) contacting interfaces for more than half a century. To date, the significant progress has been made in the layered magnetic FM/AFM thin film systems. EB mechanisms have shown substantive research advances. Here some of the new advances are introduced and discussed with the emphasis on the influence of AFlVl layer, the interlayer EB coupling across nonmagnetic spacer, and the interlayer coupling across AFlVl layer, as well as EB related to multiferrioc materials and electrical control.展开更多
In situ-grown Mg-Al layered double hydroxide(LDH)films were obtained on an anodized AZ31 substrate,with the immersion of sample in different concentrations of Al^(3+)solution.The structure,composition and morphology o...In situ-grown Mg-Al layered double hydroxide(LDH)films were obtained on an anodized AZ31 substrate,with the immersion of sample in different concentrations of Al^(3+)solution.The structure,composition and morphology of LDH films were investigated by X-ray diffraction(XRD),Fourier transform infrared(FTIR)and scanning electronic microscopy(SEM),and the corrosion behavior of LDH films was further studied by electrochemical impedance spectroscopy(EIS).The influence of Al^(3+)concentration on the growth behavior of LDH was also discussed.The results indicated that the nest-like structure of MgAl-LDH film was composed of interconnected MgAl-LDH nanosheets.Besides,the LDH obtained in0.032 mol·L^(-1)Al^(3+)solution,possessing dense laminated structure,could effectively seal the porous surface of anodic oxide film.EIS results revealed that the samples coated with LDH films showed a higher electrochemical impedance,and thus,the corrosion resistance of samples coated with LDH films was signally improved compared with the anodized alloy.展开更多
The tungsten trioxide(WO3) thin films were firstly prepared by spin-coating-pyrolysis methods using the ammonium metatungstate((NH4)6H2W12O40)DMF/water solution, and successfully applied as the efficient compact...The tungsten trioxide(WO3) thin films were firstly prepared by spin-coating-pyrolysis methods using the ammonium metatungstate((NH4)6H2W12O40)DMF/water solution, and successfully applied as the efficient compact layers for the planar perovskite solar cells. The influence of the WO3 film thickness and the rinsing treatment of CH_3NH_3 PbI_3 thin film with isopropanol on the photovoltaic performance of the corresponding perovskite solar cells was systematically investigated. The results revealed that the perovskite solar cell with a 62 nm thick WO3 compact layer achieved a photoelectric conversion efficiency of 5.72%, with a short circuit photocurrent density of 17.39 mA/cm^2, an open circuit voltage of 0.58 V and a fill factor of 0.57. The photoelectric conversion efficiency was improved from 5.72% to 7.04% by the isopropanol rinsing treatment.展开更多
Thin-film lithium niobate electro-optical modulator will become the key device in the future optical communication,which has the advantages of high modulation rate,low half-wave voltage,large bandwidth,and easy integr...Thin-film lithium niobate electro-optical modulator will become the key device in the future optical communication,which has the advantages of high modulation rate,low half-wave voltage,large bandwidth,and easy integration compared with conventional bulk lithium niobate modulator.However,because the electrode gap of the lithium niobate film modulator is very narrow,when the microwave frequency gets higher,it leads to higher microwave loss,and the electro-optical performance of the modulator will be greatly reduced.Here,we propose a thin film lithium niobate electro-optic modulator with a bimetallic layer electrode structure to achieve microwave loss less than 8 dB/cm in the range of 200 GHz,exhibiting a voltage-length product of 1.1 V·cm and a 3 dB electro-optic bandwidth greater than 160 GHz.High-speed data transmission test has been performed,showing good performance.展开更多
Properties of symmetrical layers as matching layers in multilayer thin film design were analyzed. A calculation method was presented to derive parameters of desired equivalent refractive index. A harmonic beam splitte...Properties of symmetrical layers as matching layers in multilayer thin film design were analyzed. A calculation method was presented to derive parameters of desired equivalent refractive index. A harmonic beam splitter was designed and fabricated to test this matching method. OCIS codes: 230.1360, 220.0220, 310.6860.展开更多
The current article is a review of recent progress and major trends in the field of flexible oxide thin film transistors(TFTs), fabricating with atomic layer deposition(ALD) processes. The ALD process offers accur...The current article is a review of recent progress and major trends in the field of flexible oxide thin film transistors(TFTs), fabricating with atomic layer deposition(ALD) processes. The ALD process offers accurate controlling of film thickness and composition as well as ability of achieving excellent uniformity over large areas at relatively low temperatures. First, an introduction is provided on what is the definition of ALD, the difference among other vacuum deposition techniques, and the brief key factors of ALD on flexible devices. Second, considering functional layers in flexible oxide TFT, the ALD process on polymer substrates may improve device performances such as mobility and stability, adopting as buffer layers over the polymer substrate, gate insulators, and active layers. Third, this review consists of the evaluation methods of flexible oxide TFTs under various mechanical stress conditions. The bending radius and repetition cycles are mostly considering for conventional flexible devices. It summarizes how the device has been degraded/changed under various stress types(directions). The last part of this review suggests a potential of each ALD film, including the releasing stress, the optimization of TFT structure, and the enhancement of device performance. Thus, the functional ALD layers in flexible oxide TFTs offer great possibilities regarding anti-mechanical stress films, along with flexible display and information storage application fields.展开更多
The properties of nanoparticles are often different from those of larger grains of the same solid material because of their very large specific surface area. This enables many novel applications, but properties such a...The properties of nanoparticles are often different from those of larger grains of the same solid material because of their very large specific surface area. This enables many novel applications, but properties such as agglomeration can also hinder their potential use. By creating nanostructured particles one can take optimum benefit from the desired properties while minimizing the adverse effects. We aim at developing high-precision routes for scalable production of nanostructured particles. Two gas-phase synthesis routes are explored. The first one - covering nanoparticles with a continuous layer - is carried out using atomic layer deposition in a fluidized bed. Through fluidization, the full surface area of the nanoparticles becomes available. With this process, particles can be coated with an ultra-thin film of constant and well-tunable thickness. For the second route - attaching nanoparticles to larger particles - a novel approach using electrostatic forces is demonstrated. The micron-sized particles are charged with one polarity using tribocharging. Using electrospraying, a spray of charged nanoparticles with opposite polarity is generated. Their charge prevents agglomeration, while it enhances efficient deposition at the surface of the host particle. While the proposed processes offer good potential for scale-up, further work is needed to realize large-scale processes.展开更多
Many important applications of room temperature ionic liquids (RTILs), e.g., lubrication, energy storage and catalysis, involve RTILs confined to solid surfaces. In order to optimize the performance, it is critical ...Many important applications of room temperature ionic liquids (RTILs), e.g., lubrication, energy storage and catalysis, involve RTILs confined to solid surfaces. In order to optimize the performance, it is critical to understand the wettability of nanometer-thick RTILs on solid surfaces. In this review, the recent progress in this filed is presented. First, the macroscopic wettability of RTILs on solids will be discussed briefly. Afterwards, the wetting of nanometer-thick RTILs will be discussed with the emphasis on RTIL/mica and RTIL/graphite interfaces since mica and graphite not only are mostly studied but also have important real-life applications. For RTIL/mica interface, the extended layering that promotes the wetting has been extensively reported and it is generally accepted that the electrostatic interaction at the RTIL/mica interface is the key. However, recent works from others and us highlight the unexpected effect of water: Water enables ion exchange between K^+ and the cations of RTILs on the mica surface and thus triggers the ordered packing of cations/anions in RTILs, resulting in extended layering. Different from mica, there is no electrical charge on the graphite surface. Interestingly, previous reports showed inconsistent results on the wettability of RTILs on graphite. Recent research from others and us suggested that π-π^+ stacking between sp2 carbon and the imidazoliumcation in展开更多
基金the financial support of NSERC(Discovery Grant RGPIN-2015-03985).
文摘Lightweight,high-efficiency and low reflection electromagnetic interference(EMI)shielding polymer composites are greatly desired for addressing the challenge of ever-increasing electromagnetic pollution.Lightweight layered foam/film PVDF nanocomposites with efficient EMI shielding effectiveness and ultralow reflection power were fabricated by physical foaming.The unique layered foam/film structure was composed of PVDF/SiCnw/MXene(Ti_(3)C_(2)Tx)composite foam as absorption layer and highly conductive PVDF/MWCNT/GnPs composite film as a reflection layer.The foam layer with numerous heterogeneous interfaces developed between the SiC nanowires(SiCnw)and 2D MXene nanosheets imparted superior EM wave attenuation capability.Furthermore,the microcellular structure effectively tuned the impedance matching and prolonged the wave propagating path by internal scattering and multiple reflections.Meanwhile,the highly conductive PVDF/MWCNT/GnPs composite(~220 S m^(−1))exhibited superior reflectivity(R)of 0.95.The tailored structure in the layered foam/film PVDF nanocomposite exhibited an EMI SE of 32.6 dB and a low reflection bandwidth of 4 GHz(R<0.1)over the Kuband(12.4-18.0 GHz)at a thickness of 1.95 mm.A peak SER of 3.1×10^(-4) dB was obtained which corresponds to only 0.0022% reflection efficiency.In consequence,this study introduces a feasible approach to develop lightweight,high-efficiency EMI shielding materials with ultralow reflection for emerging applications.
文摘We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester(PCBM). 1% vanadium-doped TiO2nanoparticles were synthesized via the solvothermal method. Crystalline structure, morphology, and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction, scanning electron microscopy, transmittance electron microscopy, and UV–visible transmission spectrum. The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm. The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm. The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm^2 compared with its pure counterpart. In the cells using 60 nm pure and vanadium-doped TiO2 layers, the cell using the doped layer showed much higher efficiency. It is remarkable that the external quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths.
文摘In this paper, the cross sectional microstructure and crystal structure of ion plated multi layer films of stainless steel (1Cr18Ni9Ti ) were studied by cross sectional transmission electron microscopy (XTEM). The results show that ion plated stainless steel multi layer films are fine grained double phase steel films of austenites and ferrites.Cross section film growing microstructures can be divided into three zones: fine equiaxed crystals, fine columnar crystals and coarse columnar crystals. Interfaces in multi layer films can promote fine grained growing and interrupt columnar grained growing,and improve properties of film materials.
基金This work was supported by the Doctoral Training Foundation of the National Education Commission.
文摘Sensitive magnetic field sensor with good performances can be fabricated utilizing the giant magneto-impedance (GMI) effect of soft magnetic multi-layer thin films. The transverse and longitudinal GMI effect in patterned FeSiB/Cu/FeSiB tri-layer films with the change of external magnetic field and frequency were studied at the same time. The change of the impedance of the films with the external magnetic fieldand frequency was shown. Comparing the longitudinal and transverse effect, the transverse effect has a larger linear range from zero magnetic field to a quite large magnetic field at all frequencies, and the change still were not saturated until the external magnetic field reached 1.2×104A/m, which illustrated that the films can be utilized to detect larger magnetic fields than now presented GMI sensors.
基金This work is supported by the National Natural Science Foundation of China.
文摘Polycrystalline diamond films have been synthesized on various substrates by hot filament CVD from the mixture gases of methane and hydrogen. The interface layers between CVD diamond films and substrates have been investigated by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). In addition, visible luminescence between 2.0~3.5eV of undoped and boron-doped CVD diamond films has also been studied by cathodoluminescence.
文摘From different reports, it (AZO) and indium-doped including usage areas. We nanocrystalline films with is realized that there is a need to consider all sides of aluminum-doped zinc oxide zinc oxide (IZO) thin films with their optical, luminescence and surface properties establish an assessment to carry out further information to summarize AZO and IZO impact of the layer number.
文摘The optical parameters for three samples of intrinsic, doped Si and doped Mg (Al x Ga 1- x ) y In 1- y P prepared by the MOCVD on GaAs substrate were measured by using ellipsometry and were calculated by the two-layer absorption film model. The results obtained were discussed. The grown rates and thickness of oxidic layer on the intrinsic (Al x Ga 1- x ) y In 1- y P surface exposed in the atmosphere were studied. A linear dependence of oxidic layer thickness on the time was obtained.
基金Supported by the National High Technology Research and Development Program of China under Grant No 2013AA032205the National Natural Science Foundation of China under Grant Nos 11474018,51272022 and 61575019+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant Nos 20120009130005 and 20130009130001the Technological Development Contract under Grant No HETONG-150188-04E008
文摘We present a systematic analysis of the exciton-recombination zone within all-quantum-dot (QD) multilayer films using sensing QD layers in QD-based light-emitting diodes (QLEDs), and demonstrate the a11-QD multilayer films with different sequences of layers prepared by inserting a sensing blue QD layer denoted as B at various positions within four red QD multilayers denoted as R. We also use different hole transporting layers (PVK, CBP as well as poly-TPD) to prevent the formation of leakage current and to improve the luminance. The results show that the total EL emission is mostly at the fourth (60%) and fifth (40%) QD monolayers, adjacent to ITO. This presents both decreasing current density and increasing brightness with different hole transporting layers, thus resulting in more efficient performance.
基金supported by the National Science Foundation of China(Grant numbers 52274062)Natural Science Foundation of Liaoning Province(Grant numbers 2022-MS-362)。
文摘Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.
基金Supported by Provincial Frontier and Key Technology Innovation Special Fund of Guangdong Province(No.2015B020227001)Guangzhou Science and Technology Plan Scientific Research Projects(No.201504010023)Fundamental Research Funds of State Key Laboratory of Ophthalmology of China,and Five Five Cultivation Project of Ophthalmic Center,Sun Yat-sen University
文摘AIM: To investigate the effects of different concentrations of artificial tears on lipid layer thickness (LLT) and blink rate (BR) in dry eye patients. METHODS: This study included 106 eyes of 58 patients with dry eye. The lipid deficiency type was defined as the LLT baseline 〈75 nm. The LLT and BR were measured at baseline and 1, 5 and 15min after the instillation of 0.1% or 0.3% sodium hyaluronate (SH) eye drops by using the LipiView ocular surface interferometer. RESULTS: In the lipid deficiency group, the LLT increased from baseline at 1rain post instillation. The LLT after the instillation of 0.1% SH was significantly higher than that after the instillation of 0.3% SH (P〈0.001). The LLT returned to baseline at 15min post instillation of 0.1% SH and at 5min post instillation of 0.3% SH. In the non-lipid deficiency group, the LLT decreased from baseline at lmin and returned to baseline at 5rain for both treatments. The BRs were not significantly different at different time points for both treatments. CONCLUSION: SH eye drops induce a short-term increase in LLT of patients with lipid deficiency. A low concentration of artificial tears have a stronger effect than a high concentration of artificial tears on the increase in LLT. in comparison, SH eye drops induce a transient and slight decrease in LLT of patients without lipid deficiency. A low concentration of artificial tears might be better for patients with lipid deficiency.
文摘The deposition of high-quality diamond films and their adhesion on cemented carbides are strongly influenced by the catalytic effect of cobalt under typical deposition conditions. Decreasing Co content on the surface of the cemented carbide is often used for the diamond film deposition. But the leaching of Co from the WC-Co substrate leading to a mechanical weak surface often causes a poor adhesion. In this paper we adopted an implant copper layer prepared by vaporization to improve the mechanical properties of the Co-leached substrate. The diamond films were grown by microwave plasma chemical vapor deposition from CH4:H2 gas mixture. The cross section and the morphology of the diamond film were characterized by scanning electron microscopy (SEM). The non-diamond content in the film was analyzed by Raman spectroscopy. The effects of pretreatment on the concentrations of Co and Cu near the interfacial region were examined by energy dispersive spectrum (EDS) equipped with SEM. The adhesion of the diamond on the substrate was evaluated with a Rockwell-type hardness tester. The results indicate that the diamond films prepared with implant copper layer have a good adhesion to the cemented carbide substrate due to the recovery of the mechanical properties of the Co-depleted substrate after the copper implantation and the formation of less amorphous carbon between the substrate and the diamond film.
基金Supported by the National Natural Science Foundation of China (Grant Nos.61804056 and 92065102)。
文摘Twisting the stacking of layered materials leads to rich new physics. A three-dimensional topological insulator film hosts two-dimensional gapless Dirac electrons on top and bottom surfaces, which, when the film is below some critical thickness, will hybridize and open a gap in the surface state structure. The hybridization gap can be tuned by various parameters such as film thickness and inversion symmetry, according to the literature. The three-dimensional strong topological insulator Bi(Sb)Se(Te) family has layered structures composed of quintuple layers(QLs) stacked together by van der Waals interaction. Here we successfully grow twistedly stacked Sb_2Te_3 QLs and investigate the effect of twist angels on the hybridization gaps below the thickness limit. It is found that the hybridization gap can be tuned for films of three QLs, which may lead to quantum spin Hall states.Signatures of gap-closing are found in 3-QL films. The successful in situ application of this approach opens a new route to search for exotic physics in topological insulators.
基金supported by China National Funds for Distinguished Young Scientists (Grant No. 51025103)the National Basic Research Program of China (Grant Nos. 50872118 and 58021001)
文摘The exchange bias (EB) has been investigated in magnetic materials with the ferromagnetic (FM)/antiferromagnetic (AFM) contacting interfaces for more than half a century. To date, the significant progress has been made in the layered magnetic FM/AFM thin film systems. EB mechanisms have shown substantive research advances. Here some of the new advances are introduced and discussed with the emphasis on the influence of AFlVl layer, the interlayer EB coupling across nonmagnetic spacer, and the interlayer coupling across AFlVl layer, as well as EB related to multiferrioc materials and electrical control.
基金supported by the National Key Research and Development Program of China(2016YFB0301100)the National Natural Science Foundation of China(51701029,51531002,51474043)+2 种基金China Postdoctoral Science Foundation Funded Project(2017M620410,2018T110942)the ChongqingPostdoctoral Scientific Research Foundation(Xm2017010)the Chongqing Research Program of Basic Research and Frontier Technology(cstc2016jcyjA0388,cstc2017jcyjBX0040)。
文摘In situ-grown Mg-Al layered double hydroxide(LDH)films were obtained on an anodized AZ31 substrate,with the immersion of sample in different concentrations of Al^(3+)solution.The structure,composition and morphology of LDH films were investigated by X-ray diffraction(XRD),Fourier transform infrared(FTIR)and scanning electronic microscopy(SEM),and the corrosion behavior of LDH films was further studied by electrochemical impedance spectroscopy(EIS).The influence of Al^(3+)concentration on the growth behavior of LDH was also discussed.The results indicated that the nest-like structure of MgAl-LDH film was composed of interconnected MgAl-LDH nanosheets.Besides,the LDH obtained in0.032 mol·L^(-1)Al^(3+)solution,possessing dense laminated structure,could effectively seal the porous surface of anodic oxide film.EIS results revealed that the samples coated with LDH films showed a higher electrochemical impedance,and thus,the corrosion resistance of samples coated with LDH films was signally improved compared with the anodized alloy.
基金Project supported by the National Natural Science Foundation of China(Nos.51472071,512720616,51072043)the National Basic Research Program of China(No.2011CBA00700)
文摘The tungsten trioxide(WO3) thin films were firstly prepared by spin-coating-pyrolysis methods using the ammonium metatungstate((NH4)6H2W12O40)DMF/water solution, and successfully applied as the efficient compact layers for the planar perovskite solar cells. The influence of the WO3 film thickness and the rinsing treatment of CH_3NH_3 PbI_3 thin film with isopropanol on the photovoltaic performance of the corresponding perovskite solar cells was systematically investigated. The results revealed that the perovskite solar cell with a 62 nm thick WO3 compact layer achieved a photoelectric conversion efficiency of 5.72%, with a short circuit photocurrent density of 17.39 mA/cm^2, an open circuit voltage of 0.58 V and a fill factor of 0.57. The photoelectric conversion efficiency was improved from 5.72% to 7.04% by the isopropanol rinsing treatment.
基金supported by the Self-deployment Project of Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(No.2021ZZ104)the Fujian Province STS Project(Nos.2020T3002 and 2022T3012)。
文摘Thin-film lithium niobate electro-optical modulator will become the key device in the future optical communication,which has the advantages of high modulation rate,low half-wave voltage,large bandwidth,and easy integration compared with conventional bulk lithium niobate modulator.However,because the electrode gap of the lithium niobate film modulator is very narrow,when the microwave frequency gets higher,it leads to higher microwave loss,and the electro-optical performance of the modulator will be greatly reduced.Here,we propose a thin film lithium niobate electro-optic modulator with a bimetallic layer electrode structure to achieve microwave loss less than 8 dB/cm in the range of 200 GHz,exhibiting a voltage-length product of 1.1 V·cm and a 3 dB electro-optic bandwidth greater than 160 GHz.High-speed data transmission test has been performed,showing good performance.
文摘Properties of symmetrical layers as matching layers in multilayer thin film design were analyzed. A calculation method was presented to derive parameters of desired equivalent refractive index. A harmonic beam splitter was designed and fabricated to test this matching method. OCIS codes: 230.1360, 220.0220, 310.6860.
基金supported by the National Research Foundation of Korea(NRF)(No.NRF-2017RID1A1B03034035)the Ministry of Trade,Industry&Energy(No.#10051403)the Korea Semiconductor Research Consortium
文摘The current article is a review of recent progress and major trends in the field of flexible oxide thin film transistors(TFTs), fabricating with atomic layer deposition(ALD) processes. The ALD process offers accurate controlling of film thickness and composition as well as ability of achieving excellent uniformity over large areas at relatively low temperatures. First, an introduction is provided on what is the definition of ALD, the difference among other vacuum deposition techniques, and the brief key factors of ALD on flexible devices. Second, considering functional layers in flexible oxide TFT, the ALD process on polymer substrates may improve device performances such as mobility and stability, adopting as buffer layers over the polymer substrate, gate insulators, and active layers. Third, this review consists of the evaluation methods of flexible oxide TFTs under various mechanical stress conditions. The bending radius and repetition cycles are mostly considering for conventional flexible devices. It summarizes how the device has been degraded/changed under various stress types(directions). The last part of this review suggests a potential of each ALD film, including the releasing stress, the optimization of TFT structure, and the enhancement of device performance. Thus, the functional ALD layers in flexible oxide TFTs offer great possibilities regarding anti-mechanical stress films, along with flexible display and information storage application fields.
文摘The properties of nanoparticles are often different from those of larger grains of the same solid material because of their very large specific surface area. This enables many novel applications, but properties such as agglomeration can also hinder their potential use. By creating nanostructured particles one can take optimum benefit from the desired properties while minimizing the adverse effects. We aim at developing high-precision routes for scalable production of nanostructured particles. Two gas-phase synthesis routes are explored. The first one - covering nanoparticles with a continuous layer - is carried out using atomic layer deposition in a fluidized bed. Through fluidization, the full surface area of the nanoparticles becomes available. With this process, particles can be coated with an ultra-thin film of constant and well-tunable thickness. For the second route - attaching nanoparticles to larger particles - a novel approach using electrostatic forces is demonstrated. The micron-sized particles are charged with one polarity using tribocharging. Using electrospraying, a spray of charged nanoparticles with opposite polarity is generated. Their charge prevents agglomeration, while it enhances efficient deposition at the surface of the host particle. While the proposed processes offer good potential for scale-up, further work is needed to realize large-scale processes.
基金the American Chemical Society Petroleum Research Fund (ACS PRF No. 54840-DNI5)Advanced Storage Technology Consortium (ASTC)+1 种基金Taiho Kogyo Tribology Research Foundation (TTRF) for the financial supportthe financial support of the National Natural Science Foundation of China (No. 21774098)
文摘Many important applications of room temperature ionic liquids (RTILs), e.g., lubrication, energy storage and catalysis, involve RTILs confined to solid surfaces. In order to optimize the performance, it is critical to understand the wettability of nanometer-thick RTILs on solid surfaces. In this review, the recent progress in this filed is presented. First, the macroscopic wettability of RTILs on solids will be discussed briefly. Afterwards, the wetting of nanometer-thick RTILs will be discussed with the emphasis on RTIL/mica and RTIL/graphite interfaces since mica and graphite not only are mostly studied but also have important real-life applications. For RTIL/mica interface, the extended layering that promotes the wetting has been extensively reported and it is generally accepted that the electrostatic interaction at the RTIL/mica interface is the key. However, recent works from others and us highlight the unexpected effect of water: Water enables ion exchange between K^+ and the cations of RTILs on the mica surface and thus triggers the ordered packing of cations/anions in RTILs, resulting in extended layering. Different from mica, there is no electrical charge on the graphite surface. Interestingly, previous reports showed inconsistent results on the wettability of RTILs on graphite. Recent research from others and us suggested that π-π^+ stacking between sp2 carbon and the imidazoliumcation in