In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducte...In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducted.A series of incremental dynamic analyses(IDA)are performed on a case of large reinforced concrete silo using 10 seismic recordings.The IDA results are given by two average IDA capacity curves,which are represented,as well as the seismic capacity of the studied structure,with and without a consideration of the SSI while accounting for the effect of GSI.These curves are used to quantify and evaluate the damage of the studied silo by utilizing two damage indices,one based on dissipated energy and the other on displacement and dissipated energy.The cumulative energy dissipation curves obtained by the average IDA capacity curves with and without SSI are presented as a function of the base shear,and these curves allow one to obtain the two critical points and the different limit states of the structure.It is observed that the SSI and GSI significantly influence the seismic response and capacity of the studied structure,particularly at higher levels of PGA.Moreover,the effect of the SSI reduces the damage index of the studied structure by 4%.展开更多
Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is ...Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is proposed for rotationally symmetric multi-scale problems in anisotropic magnetized plasma.Within the CNDG algorithm,an alternative scheme for the simulation of anisotropic plasma is proposed in body-of-revolution domains.Convolutional perfectly matched layer(CPML)formulation is proposed to efficiently solve the open region problems.Numerical example is carried out for the illustration of effectiveness including the efficiency,resources,and absorption.Through the results,it can be concluded that the proposed scheme shows considerable performance during the simulation.展开更多
In numerical simulation of wave propagation,both viscoelastic materials and perfectly matched layers(PMLs)attenuate waves.The wave equations for both the viscoelastic model and the PML contain convolution operators.Ho...In numerical simulation of wave propagation,both viscoelastic materials and perfectly matched layers(PMLs)attenuate waves.The wave equations for both the viscoelastic model and the PML contain convolution operators.However,convolution operator is intractable in finite-difference time-domain(FDTD)method.A great deal of progress has been made in using time stepping instead of convolution in FDTD.To incorporate PML into viscoelastic media,more memory variables need to be introduced,which increases the code complexity and computation costs.By modifying the nonsplitting PML formulation,I propose a viscoelastic model,which can be used as a viscoelastic material and/or a PML just by adjusting the parameters.The proposed viscoelastic model is essentially equivalent to a Maxwell model.Compared with existing PML methods,the proposed method requires less memory and its implementation in existing finite-difference codes is much easier.The attenuation and phase velocity of P-and S-waves are frequency independent in the viscoelastic model if the related quality factors(Q)are greater than 10.The numerical examples show that the method is stable for materials with high absorption(Q=1),and for heterogeneous media with large contrast of acoustic impedance and large contrast of viscosity.展开更多
It is an important issue to numerically solve the time fractional Schrödinger equation on unbounded domains, which models the dynamics of optical solitons propagating via optical fibers. The perfectly matched lay...It is an important issue to numerically solve the time fractional Schrödinger equation on unbounded domains, which models the dynamics of optical solitons propagating via optical fibers. The perfectly matched layer approach is applied to truncate the unbounded physical domain, and obtain an initial boundary value problem on a bounded computational domain, which can be efficiently solved by the finite difference method. The stability of the reduced initial boundary value problem is rigorously analyzed. Some numerical results are presented to illustrate the accuracy and feasibility of the perfectly matched layer approach. According to these examples, the absorption parameters and the width of the absorption layer will affect the absorption effect. The larger the absorption width, the better the absorption effect. There is an optimal absorption parameter, the absorption effect is the best.展开更多
The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this p...The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this paper, the method is developed to extend the NPML to simulating elastic wave propagation in poroelastic media. Biot's equations are discretized and approximated to a staggered-grid by applying a fourth-order accurate central difference in space and a second-order accurate central difference in time. A cylindrical twolayer seismic model and a borehole model are chosen to validate the effectiveness of the NPML. The results show that the numerical solutions agree well with the solutions of the discrete wavenumber (DW) method.展开更多
Reverse-time migration in finite space requires effective boundary processing technology to eliminate the artificial truncation boundary effect in the migration result.On the basis of the elastic velocity-stress equat...Reverse-time migration in finite space requires effective boundary processing technology to eliminate the artificial truncation boundary effect in the migration result.On the basis of the elastic velocity-stress equations in vertical transversely isotropic media and the idea of the conventional split perfectly matched layer(PML),the PML wave equations in reverse-time migration are derived in this paper and then the high order staggered grid discrete schemes are subsequently given.Aiming at the"reflections"from the boundary to the computational domain,as well as the effect of seismic event's abrupt changes at the two ends of the seismic array,the PML arrangement in reverse-time migration is given.The synthetic and real elastic,prestack,multi-component,reverse-time depth migration results demonstrate that this method has much better absorbing effects than other methods and the joint migration produces good imaging results.展开更多
The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-eleme...The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.展开更多
When simulating seismic wave propagation in free space, it is essential to introduce absorbing boundary conditions to eliminate reflections from artificially trtmcated boundaries. In this paper, a damping factor refer...When simulating seismic wave propagation in free space, it is essential to introduce absorbing boundary conditions to eliminate reflections from artificially trtmcated boundaries. In this paper, a damping factor referred to as the Gaussian dmping factor is proposed. The Gaussian damping factor is based on the idea of perfectly matched layers (PMLs). This work presents a detailed analysis of the theoretical foundations and advantages of the Gaussian damping factor. Additionally, numerical experiments for the simulation of seismic waves are presented based on two numerical models: a homogeneous model and a multi-layer model. The results show that the proposed factor works better. The Gaussian damping factor achieves a higher Signal-to-Noise Ratio (SNR) than previously used factors when using same number of PMLs, and requires less PMLs than other methods to achieve an identical SNR.展开更多
Based on FDTD difference expressions and eigenfunctions of Maxwell functions in cylindrical coordinates, mesh wave impedances (MWIs) in 2D and 3D cylindrical coordinates were introduced. Combined with the concept of p...Based on FDTD difference expressions and eigenfunctions of Maxwell functions in cylindrical coordinates, mesh wave impedances (MWIs) in 2D and 3D cylindrical coordinates were introduced. Combined with the concept of perfectly matched layer (PML), MWI PML absorbing boundary condition (ABC) algorithm was deduced in 2D cylindrical coordinates. Numerical experiments were done to investigate the validity of MWI and its application in cylindrical coordinates FDTD algorithm. The results showed that MWI in cylindrical coordinates can be used to accurately calculate the numerical reflection error caused by different mesh increments in non uniform FDTD. MWI can also provide theoretical criterion to define the permitted variable range of mesh dimension. MWI PML ABC is easy to be applied and reduces low numerical reflection, which only causes a little higher reflection error compared with Teixeira's PML.展开更多
The absorbing boundary is the key in numerical simulation of borehole radar.Perfect match layer(PML) was chosen as the absorbing boundary in numerical simulation of GPR.But CPML(convolutional perfect match layer) appr...The absorbing boundary is the key in numerical simulation of borehole radar.Perfect match layer(PML) was chosen as the absorbing boundary in numerical simulation of GPR.But CPML(convolutional perfect match layer) approach that we have chosen has the advantage of being media independent.Beginning with the Maxwell equations in a two-dimensional structure,numerical formulas of finite-difference time-domain(FDTD) method with CPML boundary condition for transverse electric(TE) or transverse magnetic(TM) wave are presented in details.Also,there are three models for borehole-GPR simulation.By analyzing the simulation results,the features of targets in GPR are obtained,which can provide a better interpretation of real radar data.The results show that CPML is well suited for the simulation of borehole-GPR.展开更多
Composite electromagnetic scattering from a two-dimensional (2D) ship-like target on a one-dimensional sea surface is investigated by using the finite-difference time-domain (FDTD) method. A uniaxial perfectly mat...Composite electromagnetic scattering from a two-dimensional (2D) ship-like target on a one-dimensional sea surface is investigated by using the finite-difference time-domain (FDTD) method. A uniaxial perfectly matched layer is adopted for truncation of FDTD lattices.The FDTD updated equations can be used for the total computation domain by choosing the uniaxial parameters properly. To validate the proposed numerical technique,a 2D infinitely long cylinder over the sea surface is taken into account first.The variation of angular distribution of the scattering changing with incident angle is calculated. The results show good agreement with the conventional moment method. Finally,the influence of the incident angle,the polarization,and the size of the ship-like target on the composite scattering coefficient is discussed in detail.展开更多
Mesh-free finite difference(FD)methods can improve the geometric flexibility of modeling without the need for lattice mapping or complex meshing process.Radial-basisfunction-generated FD is among the most commonly use...Mesh-free finite difference(FD)methods can improve the geometric flexibility of modeling without the need for lattice mapping or complex meshing process.Radial-basisfunction-generated FD is among the most commonly used mesh-free FD methods and can accurately simulate seismic wave propagation in the non-rectangular computational domain.In this paper,we propose a perfectly matched layer(PML)boundary condition for a meshfree FD solution of the elastic wave equation,which can be applied to the boundaries of the non-rectangular velocity model.The performance of the PML is,however,severely reduced for near-grazing incident waves and low-frequency waves.We thus also propose the complexfrequency-shifted PML(CFS-PML)boundary condition for a mesh-free FD solution of the elastic wave equation.For two PML boundary conditions,we derive unsplit time-domain expressions by constructing auxiliary differential equations,both of which require less memory and are easy for programming.Numerical experiments demonstrate that these two PML boundary conditions effectively eliminate artificial boundary reflections in mesh-free FD simulations.When compared with the PML boundary condition,the CFS-PML boundary condition results in better absorption for near-grazing incident waves and evanescent waves.展开更多
The uniaxial perfectly matched layer (PML) method uses rectangular domain to define the PML problem and thus provides greater flexibility and efficiency in deal- ing with problems involving anisotropic scatterers.In t...The uniaxial perfectly matched layer (PML) method uses rectangular domain to define the PML problem and thus provides greater flexibility and efficiency in deal- ing with problems involving anisotropic scatterers.In this paper an adaptive uniaxial PML technique for solving the time harmonic Helmholtz scattering problem is devel- oped.The PML parameters such as the thickness of the layer and the fictitious medium property are determined through sharp a posteriori error estimates.The adaptive finite element method based on a posteriori error estimate is proposed to solve the PML equa- tion which produces automatically a coarse mesh size away from the fixed domain and thus makes the total computational costs insensitive to the thickness of the PML absorb- ing layer.Numerical experiments are included to illustrate the competitive behavior of the proposed adaptive method.In particular,it is demonstrated that the PML layer can be chosen as close to one wave-length from the scatterer and still yields good accuracy and efficiency in approximating the far fields.展开更多
In this paper, we consider electromagnetic scattering problems for two-dimensional overfilled cavities. A half ringy absorbing perfectly matched layer (PML) is introduced to enclose the cavity, and the PML formulati...In this paper, we consider electromagnetic scattering problems for two-dimensional overfilled cavities. A half ringy absorbing perfectly matched layer (PML) is introduced to enclose the cavity, and the PML formulations for both TM and TE polarizations are presented. Existence, uniqueness and convergence of the PML solutions are considered. Numerical experiments demonstrate that the PML method is efficient and accurate for solving cavity scattering problems.展开更多
We develop a uniaxial optimal perfectly matched layer (opt PML) method for solving the time-harmonic scattering problems by choosing a particular absorbing function with unbounded integral in a rectangular domain. W...We develop a uniaxial optimal perfectly matched layer (opt PML) method for solving the time-harmonic scattering problems by choosing a particular absorbing function with unbounded integral in a rectangular domain. With this choice, the solution of the optimal PML problem not only converges exponentially to the solution of the original scatting problem, but also is insensitive to the thickness of the PML layer for sufficiently small parameter ε0. Numerical experiments are included to illustrate the competitive behavior of the proposed optimal method.展开更多
An FDTD system associated with uniaxial perfectly matched layer(UPML) for an electromagnetic scattering problem in two-dimensional space in polar coordinates is considered.Particularly the FDTD system of an initial-...An FDTD system associated with uniaxial perfectly matched layer(UPML) for an electromagnetic scattering problem in two-dimensional space in polar coordinates is considered.Particularly the FDTD system of an initial-boundary value problems of the transverse magnetic(TM) mode to Maxwell's equations is obtained by Yee's algorithm,and the open domain of the scattering problem is truncated by a circle with a UPML.Besides,an artificial boundary condition is imposed on the outer boundary of the UPML.Afterwards,stability of the FDTD system on the truncated domain is established through energy estimates by the Gronwall inequality.Numerical experiments are designed to approve the theoretical analysis.展开更多
Alternating direction implicit finite difference time domain (ADI-FDTD) method is unconditionally stable and the maximum time step is not limited by the Courant stability condition, but rather by numerical error. Co...Alternating direction implicit finite difference time domain (ADI-FDTD) method is unconditionally stable and the maximum time step is not limited by the Courant stability condition, but rather by numerical error. Compared with the conventional FDTD method, the time step of ADI-FDTD can be enlarged arbitrarily and the CPU cost can be reduced. 2D perfectly matched layer (PML) absorbing boundary condition is proposed to truncate computation space for ADI-FDTD in dispersive media using recursive convolution(RC) method and the 2D PML formulations for dispersive media are derived. ADI-FDTD formulations for dispersive media can be obtained from the simplified PML formulations. The scattering of target in dispersive soil is simulated under sine wave and Gaussian pulse excitations and numerical results of ADI-FDTD with PML are compared with FDTD. Good agreement is observed. At the same time the CPU cost for ADI-FDTD is obviously reduced.展开更多
A convolution perfectly matched layer(CPML)can efficiently absorb boundary reflection in numerical simulation.However,the CPML is suitable for the first-order elastic wave equation and is difficult to apply directly t...A convolution perfectly matched layer(CPML)can efficiently absorb boundary reflection in numerical simulation.However,the CPML is suitable for the first-order elastic wave equation and is difficult to apply directly to the second-order elastic wave equation.In view of this,based on the first-order CPML absorbing boundary condition,we propose a new CPML(NCPML)boundary which can be directly applied to the second-order wave equation.We first systematically extend the first-order CPML technique into second-order wave equations,neglecting the space-varying characteristics of the partial damping coefficient in the complex-frequency domain,avoiding the generation of convolution in the time domain.We then transform the technique back to the time domain through the inverse Fourier transform.Numerical simulation indicates that the space-varying characteristics of the attenuation factor have little influence on the absorption effect and increase the memory at the same time.A number of numerical examples show that the NCPML proposed in this study is effective in simulating elastic wave propagation,and this algorithm is more efficient and requires less memory allocation than the conventional PML absorbing boundary.展开更多
To efficiently simulate and calculate the radar cross section(RCS) related electromagnetic problems by employing the finite-difference time-domain(FDTD) algorithm, an efficient stretched coordinate perfectly matched l...To efficiently simulate and calculate the radar cross section(RCS) related electromagnetic problems by employing the finite-difference time-domain(FDTD) algorithm, an efficient stretched coordinate perfectly matched layer(ESC-PML) based upon the exponential time differencing(ETD) method is proposed.The proposed implementation can not only reduce the number of auxiliary variables in the SC-PML regions but also maintain the ability of the original SC-PML in terms of the absorbing performance. Compared with the other existed algorithms, the ETDFDTD method shows the least memory consumption resulting in the computational efficiency. The effectiveness and efficiency of the proposed ESC-PML scheme is verified through the RCS relevant problems including the perfect E conductor(PEC) sphere model and the patch antenna model. The results indicate that the proposed scheme has the advantages of the ETD-FDTD method and ESC-PML scheme in terms of high computational efficiency and considerable computational accuracy.展开更多
Spectral element method(SEM) for elastic media is well known for its great flexibility and high accuracy in solving problems with complex geometries.It is an advanced choice for wave simulations.Due to anelasticity ...Spectral element method(SEM) for elastic media is well known for its great flexibility and high accuracy in solving problems with complex geometries.It is an advanced choice for wave simulations.Due to anelasticity of earth media,SEM for elastic media is no longer appropriate.On fundamental of the second-order elastic SEM,this work takes the viscoelastic wave equations and the vertical transversely isotropic(VTI) media into consideration,and establishes the second-order SEM for wave modeling in viscoelastic VTI media.The second-order perfectly matched layer for viscoelastic VTI media is also introduced.The problem of handling the overlapped absorbed corners is solved.A comparison with the analytical solution in a twodimensional viscoelastic homogeneous medium shows that the method is accurate in the wave-field modeling.Furtherly,numerical validation also presents its great flexibility in solving wave propagation problems in complex heterogeneous media.This second-order SEM with perfectly matched layer for viscoelastic VTI media can be easily applied in wave modeling in a limited region.展开更多
文摘In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducted.A series of incremental dynamic analyses(IDA)are performed on a case of large reinforced concrete silo using 10 seismic recordings.The IDA results are given by two average IDA capacity curves,which are represented,as well as the seismic capacity of the studied structure,with and without a consideration of the SSI while accounting for the effect of GSI.These curves are used to quantify and evaluate the damage of the studied silo by utilizing two damage indices,one based on dissipated energy and the other on displacement and dissipated energy.The cumulative energy dissipation curves obtained by the average IDA capacity curves with and without SSI are presented as a function of the base shear,and these curves allow one to obtain the two critical points and the different limit states of the structure.It is observed that the SSI and GSI significantly influence the seismic response and capacity of the studied structure,particularly at higher levels of PGA.Moreover,the effect of the SSI reduces the damage index of the studied structure by 4%.
文摘Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is proposed for rotationally symmetric multi-scale problems in anisotropic magnetized plasma.Within the CNDG algorithm,an alternative scheme for the simulation of anisotropic plasma is proposed in body-of-revolution domains.Convolutional perfectly matched layer(CPML)formulation is proposed to efficiently solve the open region problems.Numerical example is carried out for the illustration of effectiveness including the efficiency,resources,and absorption.Through the results,it can be concluded that the proposed scheme shows considerable performance during the simulation.
文摘In numerical simulation of wave propagation,both viscoelastic materials and perfectly matched layers(PMLs)attenuate waves.The wave equations for both the viscoelastic model and the PML contain convolution operators.However,convolution operator is intractable in finite-difference time-domain(FDTD)method.A great deal of progress has been made in using time stepping instead of convolution in FDTD.To incorporate PML into viscoelastic media,more memory variables need to be introduced,which increases the code complexity and computation costs.By modifying the nonsplitting PML formulation,I propose a viscoelastic model,which can be used as a viscoelastic material and/or a PML just by adjusting the parameters.The proposed viscoelastic model is essentially equivalent to a Maxwell model.Compared with existing PML methods,the proposed method requires less memory and its implementation in existing finite-difference codes is much easier.The attenuation and phase velocity of P-and S-waves are frequency independent in the viscoelastic model if the related quality factors(Q)are greater than 10.The numerical examples show that the method is stable for materials with high absorption(Q=1),and for heterogeneous media with large contrast of acoustic impedance and large contrast of viscosity.
文摘It is an important issue to numerically solve the time fractional Schrödinger equation on unbounded domains, which models the dynamics of optical solitons propagating via optical fibers. The perfectly matched layer approach is applied to truncate the unbounded physical domain, and obtain an initial boundary value problem on a bounded computational domain, which can be efficiently solved by the finite difference method. The stability of the reduced initial boundary value problem is rigorously analyzed. Some numerical results are presented to illustrate the accuracy and feasibility of the perfectly matched layer approach. According to these examples, the absorption parameters and the width of the absorption layer will affect the absorption effect. The larger the absorption width, the better the absorption effect. There is an optimal absorption parameter, the absorption effect is the best.
基金This research was supported by Natural Science Foundation of China (No. 403740043).
文摘The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this paper, the method is developed to extend the NPML to simulating elastic wave propagation in poroelastic media. Biot's equations are discretized and approximated to a staggered-grid by applying a fourth-order accurate central difference in space and a second-order accurate central difference in time. A cylindrical twolayer seismic model and a borehole model are chosen to validate the effectiveness of the NPML. The results show that the numerical solutions agree well with the solutions of the discrete wavenumber (DW) method.
基金supported by the 863 Program(Grant No.2006AA06Z202)Open Fund of the Key Laboratory of Geophysical Exploration of CNPC(Grant No.GPKL0802)+1 种基金CNPC Young Innovation Fund(Grant No.05E7028)the Program for New Century Excellent Talents in University(Grant No.NCET-07-0845)
文摘Reverse-time migration in finite space requires effective boundary processing technology to eliminate the artificial truncation boundary effect in the migration result.On the basis of the elastic velocity-stress equations in vertical transversely isotropic media and the idea of the conventional split perfectly matched layer(PML),the PML wave equations in reverse-time migration are derived in this paper and then the high order staggered grid discrete schemes are subsequently given.Aiming at the"reflections"from the boundary to the computational domain,as well as the effect of seismic event's abrupt changes at the two ends of the seismic array,the PML arrangement in reverse-time migration is given.The synthetic and real elastic,prestack,multi-component,reverse-time depth migration results demonstrate that this method has much better absorbing effects than other methods and the joint migration produces good imaging results.
基金sponsored by the National Natural Science Foundation of China Research(Grant No.41274138)the Science Foundation of China University of Petroleum(Beijing)(No.KYJJ2012-05-02)
文摘The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.
基金supported by the National Natural Science Foundation of China(No. 61072118)
文摘When simulating seismic wave propagation in free space, it is essential to introduce absorbing boundary conditions to eliminate reflections from artificially trtmcated boundaries. In this paper, a damping factor referred to as the Gaussian dmping factor is proposed. The Gaussian damping factor is based on the idea of perfectly matched layers (PMLs). This work presents a detailed analysis of the theoretical foundations and advantages of the Gaussian damping factor. Additionally, numerical experiments for the simulation of seismic waves are presented based on two numerical models: a homogeneous model and a multi-layer model. The results show that the proposed factor works better. The Gaussian damping factor achieves a higher Signal-to-Noise Ratio (SNR) than previously used factors when using same number of PMLs, and requires less PMLs than other methods to achieve an identical SNR.
文摘Based on FDTD difference expressions and eigenfunctions of Maxwell functions in cylindrical coordinates, mesh wave impedances (MWIs) in 2D and 3D cylindrical coordinates were introduced. Combined with the concept of perfectly matched layer (PML), MWI PML absorbing boundary condition (ABC) algorithm was deduced in 2D cylindrical coordinates. Numerical experiments were done to investigate the validity of MWI and its application in cylindrical coordinates FDTD algorithm. The results showed that MWI in cylindrical coordinates can be used to accurately calculate the numerical reflection error caused by different mesh increments in non uniform FDTD. MWI can also provide theoretical criterion to define the permitted variable range of mesh dimension. MWI PML ABC is easy to be applied and reduces low numerical reflection, which only causes a little higher reflection error compared with Teixeira's PML.
基金Project(41174061) supported by the National Natural Science Foundation of ChinaProject(2011QNZT011) supported by the Free Exploration Program of Central South University,China
文摘The absorbing boundary is the key in numerical simulation of borehole radar.Perfect match layer(PML) was chosen as the absorbing boundary in numerical simulation of GPR.But CPML(convolutional perfect match layer) approach that we have chosen has the advantage of being media independent.Beginning with the Maxwell equations in a two-dimensional structure,numerical formulas of finite-difference time-domain(FDTD) method with CPML boundary condition for transverse electric(TE) or transverse magnetic(TM) wave are presented in details.Also,there are three models for borehole-GPR simulation.By analyzing the simulation results,the features of targets in GPR are obtained,which can provide a better interpretation of real radar data.The results show that CPML is well suited for the simulation of borehole-GPR.
基金Project supported by the National Natural Science Foundation of China (Grant No 60571058)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No 20070701010)
文摘Composite electromagnetic scattering from a two-dimensional (2D) ship-like target on a one-dimensional sea surface is investigated by using the finite-difference time-domain (FDTD) method. A uniaxial perfectly matched layer is adopted for truncation of FDTD lattices.The FDTD updated equations can be used for the total computation domain by choosing the uniaxial parameters properly. To validate the proposed numerical technique,a 2D infinitely long cylinder over the sea surface is taken into account first.The variation of angular distribution of the scattering changing with incident angle is calculated. The results show good agreement with the conventional moment method. Finally,the influence of the incident angle,the polarization,and the size of the ship-like target on the composite scattering coefficient is discussed in detail.
基金supported by the National Science and Technology Major Project(2016ZX05006-002)the National Natural Science Foundation of China(Nos.41874153,41504097)
文摘Mesh-free finite difference(FD)methods can improve the geometric flexibility of modeling without the need for lattice mapping or complex meshing process.Radial-basisfunction-generated FD is among the most commonly used mesh-free FD methods and can accurately simulate seismic wave propagation in the non-rectangular computational domain.In this paper,we propose a perfectly matched layer(PML)boundary condition for a meshfree FD solution of the elastic wave equation,which can be applied to the boundaries of the non-rectangular velocity model.The performance of the PML is,however,severely reduced for near-grazing incident waves and low-frequency waves.We thus also propose the complexfrequency-shifted PML(CFS-PML)boundary condition for a mesh-free FD solution of the elastic wave equation.For two PML boundary conditions,we derive unsplit time-domain expressions by constructing auxiliary differential equations,both of which require less memory and are easy for programming.Numerical experiments demonstrate that these two PML boundary conditions effectively eliminate artificial boundary reflections in mesh-free FD simulations.When compared with the PML boundary condition,the CFS-PML boundary condition results in better absorption for near-grazing incident waves and evanescent waves.
文摘The uniaxial perfectly matched layer (PML) method uses rectangular domain to define the PML problem and thus provides greater flexibility and efficiency in deal- ing with problems involving anisotropic scatterers.In this paper an adaptive uniaxial PML technique for solving the time harmonic Helmholtz scattering problem is devel- oped.The PML parameters such as the thickness of the layer and the fictitious medium property are determined through sharp a posteriori error estimates.The adaptive finite element method based on a posteriori error estimate is proposed to solve the PML equa- tion which produces automatically a coarse mesh size away from the fixed domain and thus makes the total computational costs insensitive to the thickness of the PML absorb- ing layer.Numerical experiments are included to illustrate the competitive behavior of the proposed adaptive method.In particular,it is demonstrated that the PML layer can be chosen as close to one wave-length from the scatterer and still yields good accuracy and efficiency in approximating the far fields.
文摘In this paper, we consider electromagnetic scattering problems for two-dimensional overfilled cavities. A half ringy absorbing perfectly matched layer (PML) is introduced to enclose the cavity, and the PML formulations for both TM and TE polarizations are presented. Existence, uniqueness and convergence of the PML solutions are considered. Numerical experiments demonstrate that the PML method is efficient and accurate for solving cavity scattering problems.
基金The Major State Research Development Program (2005CB321701) of Chinathe NSF(10801063) of China
文摘We develop a uniaxial optimal perfectly matched layer (opt PML) method for solving the time-harmonic scattering problems by choosing a particular absorbing function with unbounded integral in a rectangular domain. With this choice, the solution of the optimal PML problem not only converges exponentially to the solution of the original scatting problem, but also is insensitive to the thickness of the PML layer for sufficiently small parameter ε0. Numerical experiments are included to illustrate the competitive behavior of the proposed optimal method.
文摘An FDTD system associated with uniaxial perfectly matched layer(UPML) for an electromagnetic scattering problem in two-dimensional space in polar coordinates is considered.Particularly the FDTD system of an initial-boundary value problems of the transverse magnetic(TM) mode to Maxwell's equations is obtained by Yee's algorithm,and the open domain of the scattering problem is truncated by a circle with a UPML.Besides,an artificial boundary condition is imposed on the outer boundary of the UPML.Afterwards,stability of the FDTD system on the truncated domain is established through energy estimates by the Gronwall inequality.Numerical experiments are designed to approve the theoretical analysis.
文摘Alternating direction implicit finite difference time domain (ADI-FDTD) method is unconditionally stable and the maximum time step is not limited by the Courant stability condition, but rather by numerical error. Compared with the conventional FDTD method, the time step of ADI-FDTD can be enlarged arbitrarily and the CPU cost can be reduced. 2D perfectly matched layer (PML) absorbing boundary condition is proposed to truncate computation space for ADI-FDTD in dispersive media using recursive convolution(RC) method and the 2D PML formulations for dispersive media are derived. ADI-FDTD formulations for dispersive media can be obtained from the simplified PML formulations. The scattering of target in dispersive soil is simulated under sine wave and Gaussian pulse excitations and numerical results of ADI-FDTD with PML are compared with FDTD. Good agreement is observed. At the same time the CPU cost for ADI-FDTD is obviously reduced.
基金supported by the National Science and Technology Major Special Sub-project of China(No.2016ZX05024-001-008)the National Natural Science Foundation Joint Fund Prcject of China(No.U1562215).
文摘A convolution perfectly matched layer(CPML)can efficiently absorb boundary reflection in numerical simulation.However,the CPML is suitable for the first-order elastic wave equation and is difficult to apply directly to the second-order elastic wave equation.In view of this,based on the first-order CPML absorbing boundary condition,we propose a new CPML(NCPML)boundary which can be directly applied to the second-order wave equation.We first systematically extend the first-order CPML technique into second-order wave equations,neglecting the space-varying characteristics of the partial damping coefficient in the complex-frequency domain,avoiding the generation of convolution in the time domain.We then transform the technique back to the time domain through the inverse Fourier transform.Numerical simulation indicates that the space-varying characteristics of the attenuation factor have little influence on the absorption effect and increase the memory at the same time.A number of numerical examples show that the NCPML proposed in this study is effective in simulating elastic wave propagation,and this algorithm is more efficient and requires less memory allocation than the conventional PML absorbing boundary.
基金supported by the National Natural Science Foundation of China(61571022611971022)。
文摘To efficiently simulate and calculate the radar cross section(RCS) related electromagnetic problems by employing the finite-difference time-domain(FDTD) algorithm, an efficient stretched coordinate perfectly matched layer(ESC-PML) based upon the exponential time differencing(ETD) method is proposed.The proposed implementation can not only reduce the number of auxiliary variables in the SC-PML regions but also maintain the ability of the original SC-PML in terms of the absorbing performance. Compared with the other existed algorithms, the ETDFDTD method shows the least memory consumption resulting in the computational efficiency. The effectiveness and efficiency of the proposed ESC-PML scheme is verified through the RCS relevant problems including the perfect E conductor(PEC) sphere model and the patch antenna model. The results indicate that the proposed scheme has the advantages of the ETD-FDTD method and ESC-PML scheme in terms of high computational efficiency and considerable computational accuracy.
基金financially supported by the National Natural Science Foundation of China (Grant No.41304077)Postdoctoral Science Foundation of China (Grant No.2013M531744,2014T70740)+1 种基金Key Laboratory of Geospace Environment and Geodesy (Grant No.12-02-03)Subsurface Multi-scale Imaging Laboratory (Grant No.SMIL-2014-01)
文摘Spectral element method(SEM) for elastic media is well known for its great flexibility and high accuracy in solving problems with complex geometries.It is an advanced choice for wave simulations.Due to anelasticity of earth media,SEM for elastic media is no longer appropriate.On fundamental of the second-order elastic SEM,this work takes the viscoelastic wave equations and the vertical transversely isotropic(VTI) media into consideration,and establishes the second-order SEM for wave modeling in viscoelastic VTI media.The second-order perfectly matched layer for viscoelastic VTI media is also introduced.The problem of handling the overlapped absorbed corners is solved.A comparison with the analytical solution in a twodimensional viscoelastic homogeneous medium shows that the method is accurate in the wave-field modeling.Furtherly,numerical validation also presents its great flexibility in solving wave propagation problems in complex heterogeneous media.This second-order SEM with perfectly matched layer for viscoelastic VTI media can be easily applied in wave modeling in a limited region.