Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-di...Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.展开更多
Physical and chemical processes observed in the mesosphere and thermosphere above the Earth’s low latitudes are complex and highly interrelated to activity in the low-latitude ionosphere.Metallic sodium detected by l...Physical and chemical processes observed in the mesosphere and thermosphere above the Earth’s low latitudes are complex and highly interrelated to activity in the low-latitude ionosphere.Metallic sodium detected by lidar can yield clues to dynamic and chemical processes in these spatial layers above the Earth’s atmosphere.This paper is based on sodium layer data collected at two low-latitude stations,one in the northern hemisphere and one in the southern.The low-latitude sodium layer exhibits conspicuous seasonal variations in shape,density,and altitude;these variations are similar between Earth’s hemispheres:sodium layer density at both stations reaches its seasonal maximum in autumn and minimum in summer.However,maximal Na density over Brazil is greater than that over Hainan.Nocturnal variations of Na density above the two low-latitude stations are also similar;at both,maxima are observed before sunrise.Some variations of the Na layer over Brazil that differ from those observed in the northern hemisphere may be related to the South Atlantic Magnetic Anomaly(SAMA)or fountain effect.We suggest that low-latitude Na layer data may provide useful additional evidence that could significantly improve the low-latitude part of the WACCM-Na model.展开更多
This study primarily investigates the rock fracture mechanism of bottom cushion layer blasting and explores the effects of the bottom cushion layer on rock fragmentation.It involves analyses of the evolution patterns ...This study primarily investigates the rock fracture mechanism of bottom cushion layer blasting and explores the effects of the bottom cushion layer on rock fragmentation.It involves analyses of the evolution patterns of blasting stress,characteristics of crack distribution,and rock fracture features in the specimens.First,blasting model experiments were carried out using the dynamic caustics principle to investigate the influence of bottom cushion layers and initiation methods on the integrity of the bottom rock mass.The experimental results indicate that the combined use of bottom cushion layers and inverse initiation effectively protects the integrity of the bottom rock mass.Subsequently,the process of stress wave propagation and dynamic crack propagation in rocks was simulated using the continuum-discontinuum element method(CDEM)and the Landau explosion source model,with varying thicknesses of bottom cushion layers.The numerical simulation results indicate that with increasing cushion thickness,the absorption of energy generated by the explosion becomes more pronounced,resulting in fewer cracks in the bottom rock mass.This illustrates the positive role of the cushion layer in protecting the integrity of the bottom rock mass.展开更多
Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,...Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular.展开更多
An aluminoborate,Na_(2.5)Rb[Al{B_(5)O_(10)}{B_(3)O_(5)}]·0.5NO_(3)·H_(2)O(1),was synthesized under hydrothermal condition,which was built by mixed oxoboron clusters and AlO_(4)tetrahedra.In the structure,the...An aluminoborate,Na_(2.5)Rb[Al{B_(5)O_(10)}{B_(3)O_(5)}]·0.5NO_(3)·H_(2)O(1),was synthesized under hydrothermal condition,which was built by mixed oxoboron clusters and AlO_(4)tetrahedra.In the structure,the[B_(5)O_(10)]^(5-)and[B_(3)O_(7)]^(5-)clusters are alternately connected to form 1D[B_(8)O_(15)]_(n)^(6n-)chains,which are further linked by AlO_(4)units to form a 2D monolayer with 7‑membered ring and 10‑membered ring windows.Two adjacent monolayers with opposite orientations further form a porous‑layered structure with six channels through B—O—Al bonds.Compound 1 was characterized by single crystal X‑ray diffraction,powder X‑ray diffraction(PXRD),IR spectroscopy,UV‑Vis diffuse reflection spectroscopy,and thermogravimetric analysis(TGA),respectively.UV‑Vis diffuse reflectance analysis indicates that compound 1 shows a wide transparency range with a short cutoff edge of 201 nm,suggesting it may have potential application in UV regions.CCDC:2383923.展开更多
A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to ...A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity.After 4 weeks of tail suspension,there were no notable alterations in retinal function and morphology,while after 8 weeks of tail suspension,significant reductions in retinal function were observed,and the outer nuclear layer was thinner,with abundant apoptotic cells.To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina,proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension.The results showed that the expression levels of fibroblast growth factor 2(also known as basic fibroblast growth factor)and glial fibrillary acidic protein,which are closely related to Müller cell activation,were significantly upregulated.In addition,Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks,respectively,of simulated weightlessness.These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.展开更多
In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were invest...In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were investigated by using a single factor variable method.The surface morphologies of the shell molds produced by different temperatures of the surface(first)layer slurries were observed via electron microscopy.Furthermore,the microscopic composition of these shell molds was obtained by EDS,and the osmotic effect of the slurry on the wax patterns at different temperatures was also assessed by the PZ-200 Contact Angle detector.The forming reasons for the surface cracks and holes of thick and large ZTC4 titanium alloy by investment casting were analyzed.The experimental results show that the surface of the shell molds prepared by the surface layer slurry with a low temperature exhibits noticeable damage,which is mainly due to the poor coating performance and the serious expansion and contraction of wax pattern at low temperatures.The second layer shell material(SiO_(2),Al_(2)O_(3))immerses into the crack area of the surface layer,contacts and reacts with the molten titanium to form surface cracks and holes in the castings.With the increase of the temperature of surface layer slurry,the damage to the shell surface tends to weaken,and the composition of the shell molds'surface becomes more uniform with less impurities.The results show that the surface layer slurry at 22℃is evenly coated on the surface of the wax patterns with appropriate thickness,and there is no surface shell mold rupture caused by sliding slurry after sand leaching.The surface layer slurry temperature is consistent with the wax pattern temperature and the workshop temperature,so there is no damage of the surface layer shell caused by expansion and contraction.Therefore,the shell mold prepared by the surface layer slurry at this temperature has good integrity,isolating the contact between the low inert shell material and the titanium liquid effectively,and the ZTC4 titanium alloy cylinder casting prepared by this shell mold is smooth,without cracks and holes.展开更多
The squeezing deformation of surrounding rock is an important factor restricting the safe construction and long-term operation of tunnels when a tunnel passes through soft strata with high ground stress.Under such sof...The squeezing deformation of surrounding rock is an important factor restricting the safe construction and long-term operation of tunnels when a tunnel passes through soft strata with high ground stress.Under such soft rock geological conditions,the large deformation of the surrounding rock can easily lead to the failure of supporting structures,including shotcrete cracks,spalling,and steel arch distortion.To improve the lining support performance during the large deformation of squeezed surrounding rock,this work selects aluminum foam with densities of 0.25 g/cm3,0.42 g/cm3 and 0.61 g/cm3 as the buffer layer material and carries out uniaxial confined compression tests.Through the evaluation and analysis of energy absorption and the comparison of the yield pressure of aluminum foam with those of other cushioning materials and yield pressure support systems,the strength,deformation and energy absorption of aluminum foam with a density of 0.25 g/cm3 meet the yield pressure performance requirements.The numerical model of the buffer layer yielding support system is then established via the finite element analysis software ABAQUS,and the influence of the buffer layer setting on the lining support is analyzed.Compared with the conventional support scheme,the addition of an aluminum foam buffer layer can reduce the stress and deformation of the primary support and secondary lining.The maximum and minimum principal stresses of the primary support are reduced by 13%and 15%,respectively.The maximum and minimum principal stresses of the secondary lining are reduced by 15%and 12%,respectively,and the displacement deformation of the secondary lining position is reduced by 15%.In summary,the application of aluminum foam buffer layer can reduce the stress and deformation of the primary support and secondary lining,improve the stress safety of the support and reduce the deformation of the support.展开更多
[Objective] The aim was to promote color wheat industrialization and meet the demand of people on nutritious grain, making both natural and safe food possible. [Method] Hardness indices of wheat were measured and laye...[Objective] The aim was to promote color wheat industrialization and meet the demand of people on nutritious grain, making both natural and safe food possible. [Method] Hardness indices of wheat were measured and layering peeling and milling technology was adopted to explore nutrients distribution in color wheat and effect of hardness on milling of wheat layers. [Result] The results indicated that total content of amino acid in color wheat was higher than that of common wheat by 13.91%-23.32%; Zhongpu Black 1 and Zhongpu Green 1 exceeded common wheat in Zn, Fe and Ca, but Zhongpu Purple 1 was generally lower; Zhongpu Green 1 was significantly higher in Fe and Ca by 371.80% and 102.86%, respectively. Mean- while, it was found that nutrients distribution of color wheat was similar to that of common ,one, namely, pericarp, testa, aleurone layer and embryo were abundant with nutrients. In addition, color wheat was concluded nutritious one and milling in- dustrialization of wheat layers could be achieved through layer-milling and separation technology. Furthermore, wheat hardness was proved the key element influencing milling of wheat layers. [Conclusion] The research set an example for nutrition development and utilization of color wheat.展开更多
All the indium-rich deposits with indium contents in ores more than 100×10^-6 seems to be of cassiterite-sulfide deposits or Sn-bearing Pb-Zn deposits, e.g., in the Dachang Sn deposit in Guangxi, the Dulong Sn-Zn...All the indium-rich deposits with indium contents in ores more than 100×10^-6 seems to be of cassiterite-sulfide deposits or Sn-bearing Pb-Zn deposits, e.g., in the Dachang Sn deposit in Guangxi, the Dulong Sn-Zn deposit in Yunnan, and the Meng'entaolegai Ag-Pb-Zn deposit in Inner Mongolia, the indium contents in ores range from 98×10^-6 to 236×10^-6 and show a good positive correlation with contents of zinc and tin, and their correlation coefficients are 0.8781 and 0.7430, respectively. The indium contents from such Sn-poor deposits as the Fozichong Pb-Zn deposit in Guangxi and the Huanren Pb-Zn deposit in Liaoning are generally lower than 10×10^-6, i.e., whether tin is present or not in a deposit implies the enrichment extent of indium in ores. Whether the In enrichment itself in the ore -forming fluids or the ore-forming conditions has actually caused the enrichment/depletion of indium in the deposits? After studying the fluid inclusions in quartz crystallized at the main stage of mineralization of several In-rich and In-poor deposits in China, this paper analyzed the contents and studied the variation trend of In, Sn, Pb and Zn in the ore-forming fluids. The results show that the contents of lead and zinc in the ore-forming fluids of In-rich and -poor deposits are at the same level, and the lead contents range from 22×10^-6 to 81×10^-6 and zinc from 164×10^-6 to 309×10^-6, while the contents of indium and tin in the ore-forming fluids of In-rich deposits are far higher than those of Inpoor deposits, with a difference of 1-2 orders of magnitude. Indium and tin contents in ore-forming fluid of In-rich deposits are 1.9×10^-6-4.1×10^-6 and 7×10^-6-55×10^-6, and there is a very good positive correlation between the two elements, with a correlation coefficient of 0.9552. Indium and tin contents in ore-forming fluid of In-poor deposits are 0.03×10^-6-0.09×10^-6 and 0.4×10^-6-2.0×10^-6, respectively, and there is no apparent correlation between them. This indicates, on one hand, that In-rich oreforming fluids are the material basis for the formation of In-rich deposits, and, on the other hand, tin probably played a very important role in the transport and enrichment of indium.展开更多
The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (IC...The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) to trace the source of ore-forming materials. Meanwhile, the REE compositions of the deposit ore, granite and metamorphic wall rock were also considered for comparative studies in detail. The range of ∑REE of quartz and pyrite from the deposit ores is 4.18 × 10^-6- 30.91 × 10^-6, the average of ∑REE is 13.39 × 10^-6, and the average of ∑REE of quartz in the Laowan granite is 6.68 × 10^-6. There is no distinct difference of REE parameters between the deposit ore quartz and granite quartz. The quartz in gold deposit has the same REE particular parameters as quartzes from Laowan granite, such as δEu, δCe, (La/Yb)N and (La/Sm)N, partition degree of LREE to HREE, especially, the chondrite-normalized REE patterns, but no similarity to those from metamorphic wall rock, which shows that ore-forming hydrothermal fluid is mainly the fluid coming from the Laowan granite magma, rather than metamorphic fluid. Meanwhile, comparison studies on REE features between minerals from the deposit ores and related geological bodies in the deposit show that REE characteristics of minerals can serve as an indicator of ore-forming fluid properties and sources, while the REE characteristics of the bulk samples (such as deposit ores, granites and wall rocks) can not trace the source of the ore-forming materials exactly.展开更多
REE abundances in sulfides from the Huize Zn-Pb ore field were determined with the ICPMS after preconcentration. The REE abundances in 26 sulfide samples (including pyrite, galena and sphalerite) are very low, with ...REE abundances in sulfides from the Huize Zn-Pb ore field were determined with the ICPMS after preconcentration. The REE abundances in 26 sulfide samples (including pyrite, galena and sphalerite) are very low, with the ~REE ranging from 1.6×10^-9 to 166.8×10^-9. Their LREE/HREE ratios range from 7.6 to 98, showing LREE enrichment relatively. The JEu values are below 1, indicating that they were deposited from an Eu-depleted and reducing fluid-system. Similar to the ore-hosting carbonate strata, calcite separates from carbonate veinlets filling in the fractures or faults crosscutting the carbonate strata also show clear Eu-depletion. This indicates that the carbonate veinlets and their parent fluid was possibly sourced from the strata and inherited the REE geochemical features of the strata. Therefore, REE-geochemical characteristics of both the sulfides and calcites, which were deposited from an ore-forming hydrothermal system, are similar to those of carbonate strata, and strongly suggest that the ore metals were mainly sourced from carbonate strata.展开更多
Based on an analysis of the fractal structures and mass transport mechanism of typical shear-fluid-ore formation system, the fractal dispersion theory of the fluid system was used in the dynamic study of the ore forma...Based on an analysis of the fractal structures and mass transport mechanism of typical shear-fluid-ore formation system, the fractal dispersion theory of the fluid system was used in the dynamic study of the ore formation system. The model of point-source diffusive illuviation of the shear-fluid-ore formation system was constructed, and the numerical simulation of dynamics of the ore formation system was finished. The result shows that: (1) The metallogenic system have nested fractal structure. Different fractal dimension values in different systems show unbalance and inhomogeneity of ore-forming processes in the geohistory. It is an important parameter to symbolize the process of remobilization and accumulation of ore-forming materials. Also it can indicate the dynamics of the metallogenic system quantitatively to some extent. (2) In essence, the fractal dispersive ore-forming dynamics is a combination of multi-processes dominated by fluid dynamics and supplemented by molecule dispersion in fluids and fluid-rock interaction. It changes components and physico-chemical properties of primary rocks and fluids, favouring deposition and mineralization of ore-forming materials. (3) Gold ore-forming processes in different types of shear zones are quite different. (1) In a metallogenic system with inhomogeneous volumetric change and inhomogeneous shear, mineralization occurs in structural barriers in the centre of a shear zone and in geochemical barriers in the shear zone near its boundaries. But there is little possibility of mineralization out of the shear zone. (2) As to a metallogenic system with inhomogeneous volumetric change and simple shear, mineralization may occur only in structural barriers near the centre of the shear zone. (3) In a metallogenic system with homogeneous volumetric change and inhomogeneous shear, mineralization may occur in geochemical barriers both within and out of the shear zone.展开更多
The Mayuan stratabound Pb-Zn deposit in Nanzheng,Shaanxi Province,is located in the northern margin of the Yangtze Plate,in the southern margin of the Beiba Arch.The orebodies are stratiform and hosted in breciated do...The Mayuan stratabound Pb-Zn deposit in Nanzheng,Shaanxi Province,is located in the northern margin of the Yangtze Plate,in the southern margin of the Beiba Arch.The orebodies are stratiform and hosted in breciated dolostone of the Sinian Dengying Formation.The ore minerals are primarily sphalerite and galena,and the gangue minerals comprise of dolomite,quartz,barite,calcite and solid bitumen.Fluid inclusions from ore-stage quartz and calcite have homogenization tempreatures from 98 to 337℃ and salinities from 7.7 wt%to 22.2 wt%(NaCl equiv.).The vapor phase of the inclusions is mainly composed of CH_4 with minor CO_2 and H_2S.The δD_(fluid) values of fluid inclusions in quartz and calcite display a range from-68‰ to-113‰(SMOW),and the δ^(18)O_(fluid)values calculated from δ^(18)O_(quartz) and δ^(18)O_(calcite) values range from 4.5‰ to 16.7‰(SMOW).These data suggest that the ore-forming fluids may have been derived from evaporitic sea water that had reacted with organic matter.The δ^(13)C_(CH4) values of CH_4 in fluid inclusions range from-37.2‰ to-21.0‰(PDB),suggesting that the CH_4 in the ore-forming fluids was mainly derived from organic matter.This,together with the abundance of solid bitumen in the ores,suggest that organic matter played an important role in mineralization,and that the thermochemical sulfate reduction(TSR) was the main mechanism of sulfide precipitation.The Mayuan Pb-Zn deposit is a carbonate-hosted epigenetic deposit that may be classified as a Mississippi Valley type(MVT) deposit.展开更多
Fluorite is one of the main gangue minerals in the Maoniuping REE deposit, Sichuan Province, China. Fluorite with different colors occurs not only within various orebodies, but also in wallrocks of the orefield. Based...Fluorite is one of the main gangue minerals in the Maoniuping REE deposit, Sichuan Province, China. Fluorite with different colors occurs not only within various orebodies, but also in wallrocks of the orefield. Based on REE geochemistry, fluorite in the orefleld can be classified as the LREE-rich, LREE-flat and LREE-depleted types. The three types of fluorite formed at different stages from the same hydrothermal fluid source, with the LREE-rich fluorite forming at the relatively early stage, the LREE-flat fluorite in the middle, and the LREE-depleted fluorite at the latest stage. Various lines of evidence demonstrate that the variation of the REE contents of fluorite shows no relation to the color. The mineralization of the Maouiuping REE deposit is associated spatially and temporally with carbonatite-syenite magmatism and the ore-forming fluids are mainly derived from carbonatite and syenite melts.展开更多
Obvious differences in mineralization characteristics exist between the southern and northern parts of the eastern part of the Jiangnan Uplift in northern Jiangxi Province and southern Anhui Province. The regional met...Obvious differences in mineralization characteristics exist between the southern and northern parts of the eastern part of the Jiangnan Uplift in northern Jiangxi Province and southern Anhui Province. The regional metallogeny is discussed, and the ore-forming fluid systems are classified in this article. It is proposed that the fluid ore-forming activities in the Jiangnan Uplift both in northern Jiangxi and southern Anhui have close relationships with the crust-mantle interaction and magmatic-tectonic activities. The types and scales of the mineralization on the both sides of the eastern Jiangnan Uplift were determined by fluid ore-forming systems and geological backgrounds.展开更多
The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less...The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less researches have addressed these deposits,and the genesis of the Zhaxikang deposit is still controversial.Based on field investigation,petrographic,microthermometric,Laser Raman Microprobe(LRM) and SEM/EDS analyses of fluid,melt-fluid,melt and solid inclusions in quartz and beryl from pegmatite,this paper documents the characteristics and the evolution of primary magmatic fluid which was genetically related to greisenization,pegmatitization,and silification in the area.The results show that the primary magmatic fluids were derived from unmixing between melt and fluid and underwent a phase separation process soon after the exsolution.The primary magmatic fluids are of low salinity,high temperature,and can be approximated by the H_2O-NaCl-CO_2 system.The presence of Mn-Fe carbonate in melt-fluid inclusions and a Zn-bearing mineral(gahnite) trapped in beryl and in inclusions from pegmatite indicates high Mn,Fe,and Zn concentrations in the parent magma and magmatic fluids,and implies a genetic link between pegmatite and Pb-Zn-Sb mineralization.High B and F concentrations in the parent magma largely lower the solidus of the magma and lead to late fluid exsolution,thus the primary magmatic fluids related to pegmatite have much lower temperature than those in most porphyry systems.Boiling of the primary magmatic fluids leads to high-salinity and high-temperature fluids which have high capacity to transport Pb,Zn and Sb.The decrease in temperature and mixing with fluids from other sources may have caused the precipitation of Pb-Zn-Sn(Au) minerals in the distal fault systems surrounding the causative intrusion.展开更多
The Chalukou porphyry Mo deposit, located in the Great Hinggan Range, is the largest Mo deposit in northeast China, although the age and genesis of the associated magmatic intrusions remain debated.Here we report zirc...The Chalukou porphyry Mo deposit, located in the Great Hinggan Range, is the largest Mo deposit in northeast China, although the age and genesis of the associated magmatic intrusions remain debated.Here we report zircon U-Pb ages and trace elements, whole rock geochemistry and Sre Nd isotope data with a view to understand the relationship between the magmatism and molybdenum mineralization.Zircon U-Pb analysis yield an age of 475 Ma for rhyolite in the older strata, 168 Ma for the premineralization monzogranite, and 154 Ma for the syn-mineralization granite porphyry. The granite porphyry and quartz porphyry are considered as the ore-forming intrusions. These rocks are peraluminous, alkali-calcic, and belong to high-K to shoshonitic series with a strong depletion of Eu. They also display characteristics of I-type granites. The rocks exhibit wide variations of(87 Sr/86 Sr)iin the range of 0.705426 -0.707363, and ε_(Nd)(t) of -3.7 to 0.93. Zircon REE distribution patterns show characteristics between crust and the mantle, implying magma genesis through crust-mantle interaction. The Fe_2O_3/FeO values(average 1) for the whole rock and EuN/Eu*Nvalues(average 0.45), Ce^(4+)/Ce^(3+) values(average 301)for zircon grains from the granite porphyry are higher than those from other lithologies. These features suggest that the ore-forming intrusions(syn-mineralization porphyry) had higher oxygen fugacity conditions than those of the pre-mineralization and post-mineralization rocks. The Chalukou Mo deposit formed in relation to the southward subduction of the Mongol-Okhotsk Ocean. Our study suggests that the subduction-related setting, crust-mantle interaction, and the large-scale magmatic intrusion were favorable factors to generate the super-large Mo deposits in this area.展开更多
The NaCl-H_2O binary system is a major component of solutions coexisting with ores. Observation ofsaturated solutions of NaCl-H_2O by using the method of hydrothermal diamond anvil cell (HDAC) is a new approach tothe ...The NaCl-H_2O binary system is a major component of solutions coexisting with ores. Observation ofsaturated solutions of NaCl-H_2O by using the method of hydrothermal diamond anvil cell (HDAC) is a new approach tothe study of ore-forming fluids. The salinities of NaCl-H_2O solutions in experimental observation are in a range of 32-55%. The observed temperature range is 25℃-850℃, and the pressure range 1 atm-10 kb. In this temperature-pressure range, the supercritical single phase, two phases (L,V) close to the critical state and two-phased (L+V) immis-cible region were observed. And for the salinity of 35% the two phase L+V immiscible region of NaCl-H_2O solutionwas observed in a range of 253-720℃. Another temperature range, 400-817℃, was observed for the immiscible two-phased region of 50% salinity solution. In the high-temperature part of the two-phased immiscible region, the phase na-ture is very unstable. A "critical phenomenon" was observed when the heating path was very close to the critical state.It is possible to observe a 'critical phenomenon': an "explosion" occurred almost constantly at the interface between theliquid and vapour and the interface is rather obscure. A continuous transition between phases L and V could be foundin the immiscible L+V phase while heating continuously. Moreover, as the NaCl-H_2O solution was separated into liq-uid and vapour phases, static charges surrounding each vapour bubble could be seen, and these bubbles were attractedtogether by the static charges to form a special solution structure. Besides, critical states of different salinities of NaCl-H_2O were observed in order to study the properties of the fluids occurring in the rocks in the earth interior, the origin ofore-bearing fluids and the significance of supercritical fluid with respect to the ore formation. The comparison of the sa-linity data of the fluid inclusions in the minerals of ore deposits with observations of NaCl-H_2O under HDAC in theconditions of high temperatures and pressures, combined with further thermodynamic analysis of ore-formation condi-tions would explain in depth the factors determining the ore formation.展开更多
The Jiama deposit is a large copper deposit in Tibet. Mineralization occurs in three different host rocks: skarn, hornfels and porphyry. A detailed fluid inclusion study was conducted for veins in the different host ...The Jiama deposit is a large copper deposit in Tibet. Mineralization occurs in three different host rocks: skarn, hornfels and porphyry. A detailed fluid inclusion study was conducted for veins in the different host rocks to investigate the relationship between fluid evolution and ore-forming processes. Based on examination of cores from 36 drill holes, three types of veins (A, B and D) were identified in the porphyries, four types (I, II, III and IV) in the skarn, and three (a, b and c) in the hornfels. The crosscutting relationships of the veins and that of the host rocks suggest two hydrothermal stages, one early and one late stage. Fluid inclusions indicate that the Jiama hydrothermal fluid system underwent at least two episodes of fluid boiling. The first boiling event occurred during the early hydrothermal stage, as recorded by fluid inclusions hosted in type A veins in the porphyries, type a veins in the hornfels, and wollastonite in the skarns. This fluid boiling event was associated with relatively weak mineralization. The second boiling event occurred in the late hydrothermal stage, as determined from fluid inclusions hosted in type B and D veins in the porphyries, type I to IV veins in the skarns, and type b and c veins in the hornfels. This late boiling event, together with mixing with meteoric water, was responsible for more than 90% of the metal accumulation in the deposit. The first boiling only occurred in the central part of the deposit and the second boiling event took place across an entire interlayered structural zone between hornfels and marble. A spatial zoning of ore-elements is evident, and appears to be related to different migration pathways and precipitation temperatures of Cu, Mo, Pb, Zn, Au and Ag.展开更多
基金supported by the Key Research Project of China Geological Survey(Grant No.DD20230564)the Research Project of Natural Resources Department of Gansu Province(Grant No.202219)。
文摘Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.
基金supported by the NSFC (42374204, 42004143,42364012)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences (Grant No.YSBR-018)+3 种基金the Scientific Projects of Hainan Province(KJRC2023C05, ZDYF2021GXJS040)the Innovational Fund for Scientific and Technological Personnel of Hainan Provincethe Chinese Meridian ProjectPandeng Program of National Space Science Center,Chinese Academy of Sciences
文摘Physical and chemical processes observed in the mesosphere and thermosphere above the Earth’s low latitudes are complex and highly interrelated to activity in the low-latitude ionosphere.Metallic sodium detected by lidar can yield clues to dynamic and chemical processes in these spatial layers above the Earth’s atmosphere.This paper is based on sodium layer data collected at two low-latitude stations,one in the northern hemisphere and one in the southern.The low-latitude sodium layer exhibits conspicuous seasonal variations in shape,density,and altitude;these variations are similar between Earth’s hemispheres:sodium layer density at both stations reaches its seasonal maximum in autumn and minimum in summer.However,maximal Na density over Brazil is greater than that over Hainan.Nocturnal variations of Na density above the two low-latitude stations are also similar;at both,maxima are observed before sunrise.Some variations of the Na layer over Brazil that differ from those observed in the northern hemisphere may be related to the South Atlantic Magnetic Anomaly(SAMA)or fountain effect.We suggest that low-latitude Na layer data may provide useful additional evidence that could significantly improve the low-latitude part of the WACCM-Na model.
基金financially supported by the National Natural Science Foundation of China(Nos.52204085 and 52104074)the Youth Science and Technology Foundation Key Laboratory for Mechanics in Fluid Solid Coupling System,Institute of Mechanics(No.E0XM040401)。
文摘This study primarily investigates the rock fracture mechanism of bottom cushion layer blasting and explores the effects of the bottom cushion layer on rock fragmentation.It involves analyses of the evolution patterns of blasting stress,characteristics of crack distribution,and rock fracture features in the specimens.First,blasting model experiments were carried out using the dynamic caustics principle to investigate the influence of bottom cushion layers and initiation methods on the integrity of the bottom rock mass.The experimental results indicate that the combined use of bottom cushion layers and inverse initiation effectively protects the integrity of the bottom rock mass.Subsequently,the process of stress wave propagation and dynamic crack propagation in rocks was simulated using the continuum-discontinuum element method(CDEM)and the Landau explosion source model,with varying thicknesses of bottom cushion layers.The numerical simulation results indicate that with increasing cushion thickness,the absorption of energy generated by the explosion becomes more pronounced,resulting in fewer cracks in the bottom rock mass.This illustrates the positive role of the cushion layer in protecting the integrity of the bottom rock mass.
基金supported by the Project of Stable Support for Youth Team in Basic Research Field,CAS(grant No.YSBR-018)the National Natural Science Foundation of China(grant Nos.42188101,42130204)+4 种基金the B-type Strategic Priority Program of CAS(grant no.XDB41000000)the National Natural Science Foundation of China(NSFC)Distinguished Overseas Young Talents Program,Innovation Program for Quantum Science and Technology(2021ZD0300301)the Open Research Project of Large Research Infrastructures of CAS-“Study on the interaction between low/mid-latitude atmosphere and ionosphere based on the Chinese Meridian Project”.The project was supported also by the National Key Laboratory of Deep Space Exploration(Grant No.NKLDSE2023A002)the Open Fund of Anhui Provincial Key Laboratory of Intelligent Underground Detection(Grant No.APKLIUD23KF01)the China National Space Administration(CNSA)pre-research Project on Civil Aerospace Technologies No.D010305,D010301.
文摘Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular.
文摘An aluminoborate,Na_(2.5)Rb[Al{B_(5)O_(10)}{B_(3)O_(5)}]·0.5NO_(3)·H_(2)O(1),was synthesized under hydrothermal condition,which was built by mixed oxoboron clusters and AlO_(4)tetrahedra.In the structure,the[B_(5)O_(10)]^(5-)and[B_(3)O_(7)]^(5-)clusters are alternately connected to form 1D[B_(8)O_(15)]_(n)^(6n-)chains,which are further linked by AlO_(4)units to form a 2D monolayer with 7‑membered ring and 10‑membered ring windows.Two adjacent monolayers with opposite orientations further form a porous‑layered structure with six channels through B—O—Al bonds.Compound 1 was characterized by single crystal X‑ray diffraction,powder X‑ray diffraction(PXRD),IR spectroscopy,UV‑Vis diffuse reflection spectroscopy,and thermogravimetric analysis(TGA),respectively.UV‑Vis diffuse reflectance analysis indicates that compound 1 shows a wide transparency range with a short cutoff edge of 201 nm,suggesting it may have potential application in UV regions.CCDC:2383923.
基金supported by the Army Laboratory Animal Foundation of China,No.SYDW[2020]22(to TC)the Shaanxi Provincial Key R&D Plan General Project of China,No.2022SF-236(to YM)the National Natural Science Foundation of China,No.82202070(to TC)。
文摘A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity.After 4 weeks of tail suspension,there were no notable alterations in retinal function and morphology,while after 8 weeks of tail suspension,significant reductions in retinal function were observed,and the outer nuclear layer was thinner,with abundant apoptotic cells.To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina,proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension.The results showed that the expression levels of fibroblast growth factor 2(also known as basic fibroblast growth factor)and glial fibrillary acidic protein,which are closely related to Müller cell activation,were significantly upregulated.In addition,Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks,respectively,of simulated weightlessness.These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.
文摘In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were investigated by using a single factor variable method.The surface morphologies of the shell molds produced by different temperatures of the surface(first)layer slurries were observed via electron microscopy.Furthermore,the microscopic composition of these shell molds was obtained by EDS,and the osmotic effect of the slurry on the wax patterns at different temperatures was also assessed by the PZ-200 Contact Angle detector.The forming reasons for the surface cracks and holes of thick and large ZTC4 titanium alloy by investment casting were analyzed.The experimental results show that the surface of the shell molds prepared by the surface layer slurry with a low temperature exhibits noticeable damage,which is mainly due to the poor coating performance and the serious expansion and contraction of wax pattern at low temperatures.The second layer shell material(SiO_(2),Al_(2)O_(3))immerses into the crack area of the surface layer,contacts and reacts with the molten titanium to form surface cracks and holes in the castings.With the increase of the temperature of surface layer slurry,the damage to the shell surface tends to weaken,and the composition of the shell molds'surface becomes more uniform with less impurities.The results show that the surface layer slurry at 22℃is evenly coated on the surface of the wax patterns with appropriate thickness,and there is no surface shell mold rupture caused by sliding slurry after sand leaching.The surface layer slurry temperature is consistent with the wax pattern temperature and the workshop temperature,so there is no damage of the surface layer shell caused by expansion and contraction.Therefore,the shell mold prepared by the surface layer slurry at this temperature has good integrity,isolating the contact between the low inert shell material and the titanium liquid effectively,and the ZTC4 titanium alloy cylinder casting prepared by this shell mold is smooth,without cracks and holes.
基金the support of the National Natural Science Foundation of China(Grant No.42207199)Scientific Research Project of Education of Zhejiang Province(No.Y202351343)+1 种基金Zhejiang Postdoctoral Scientific Research Project(Grant Nos.ZJ2022155,ZJ2022156)Zhejiang Province International Science and Technology Cooperation Base Open Fund Project(IBGDP-2023-01)。
文摘The squeezing deformation of surrounding rock is an important factor restricting the safe construction and long-term operation of tunnels when a tunnel passes through soft strata with high ground stress.Under such soft rock geological conditions,the large deformation of the surrounding rock can easily lead to the failure of supporting structures,including shotcrete cracks,spalling,and steel arch distortion.To improve the lining support performance during the large deformation of squeezed surrounding rock,this work selects aluminum foam with densities of 0.25 g/cm3,0.42 g/cm3 and 0.61 g/cm3 as the buffer layer material and carries out uniaxial confined compression tests.Through the evaluation and analysis of energy absorption and the comparison of the yield pressure of aluminum foam with those of other cushioning materials and yield pressure support systems,the strength,deformation and energy absorption of aluminum foam with a density of 0.25 g/cm3 meet the yield pressure performance requirements.The numerical model of the buffer layer yielding support system is then established via the finite element analysis software ABAQUS,and the influence of the buffer layer setting on the lining support is analyzed.Compared with the conventional support scheme,the addition of an aluminum foam buffer layer can reduce the stress and deformation of the primary support and secondary lining.The maximum and minimum principal stresses of the primary support are reduced by 13%and 15%,respectively.The maximum and minimum principal stresses of the secondary lining are reduced by 15%and 12%,respectively,and the displacement deformation of the secondary lining position is reduced by 15%.In summary,the application of aluminum foam buffer layer can reduce the stress and deformation of the primary support and secondary lining,improve the stress safety of the support and reduce the deformation of the support.
基金Supported by National Natural Science Foundtion of China in2011(31171789)~~
文摘[Objective] The aim was to promote color wheat industrialization and meet the demand of people on nutritious grain, making both natural and safe food possible. [Method] Hardness indices of wheat were measured and layering peeling and milling technology was adopted to explore nutrients distribution in color wheat and effect of hardness on milling of wheat layers. [Result] The results indicated that total content of amino acid in color wheat was higher than that of common wheat by 13.91%-23.32%; Zhongpu Black 1 and Zhongpu Green 1 exceeded common wheat in Zn, Fe and Ca, but Zhongpu Purple 1 was generally lower; Zhongpu Green 1 was significantly higher in Fe and Ca by 371.80% and 102.86%, respectively. Mean- while, it was found that nutrients distribution of color wheat was similar to that of common ,one, namely, pericarp, testa, aleurone layer and embryo were abundant with nutrients. In addition, color wheat was concluded nutritious one and milling in- dustrialization of wheat layers could be achieved through layer-milling and separation technology. Furthermore, wheat hardness was proved the key element influencing milling of wheat layers. [Conclusion] The research set an example for nutrition development and utilization of color wheat.
基金the Key 0rientation Research Project of the Chinese Academy of Sciences (KZCX2-YW- 111);the National Natural Science Foundation of China (Grant Nos. 40172037 and 40072036) for its financial support.
文摘All the indium-rich deposits with indium contents in ores more than 100×10^-6 seems to be of cassiterite-sulfide deposits or Sn-bearing Pb-Zn deposits, e.g., in the Dachang Sn deposit in Guangxi, the Dulong Sn-Zn deposit in Yunnan, and the Meng'entaolegai Ag-Pb-Zn deposit in Inner Mongolia, the indium contents in ores range from 98×10^-6 to 236×10^-6 and show a good positive correlation with contents of zinc and tin, and their correlation coefficients are 0.8781 and 0.7430, respectively. The indium contents from such Sn-poor deposits as the Fozichong Pb-Zn deposit in Guangxi and the Huanren Pb-Zn deposit in Liaoning are generally lower than 10×10^-6, i.e., whether tin is present or not in a deposit implies the enrichment extent of indium in ores. Whether the In enrichment itself in the ore -forming fluids or the ore-forming conditions has actually caused the enrichment/depletion of indium in the deposits? After studying the fluid inclusions in quartz crystallized at the main stage of mineralization of several In-rich and In-poor deposits in China, this paper analyzed the contents and studied the variation trend of In, Sn, Pb and Zn in the ore-forming fluids. The results show that the contents of lead and zinc in the ore-forming fluids of In-rich and -poor deposits are at the same level, and the lead contents range from 22×10^-6 to 81×10^-6 and zinc from 164×10^-6 to 309×10^-6, while the contents of indium and tin in the ore-forming fluids of In-rich deposits are far higher than those of Inpoor deposits, with a difference of 1-2 orders of magnitude. Indium and tin contents in ore-forming fluid of In-rich deposits are 1.9×10^-6-4.1×10^-6 and 7×10^-6-55×10^-6, and there is a very good positive correlation between the two elements, with a correlation coefficient of 0.9552. Indium and tin contents in ore-forming fluid of In-poor deposits are 0.03×10^-6-0.09×10^-6 and 0.4×10^-6-2.0×10^-6, respectively, and there is no apparent correlation between them. This indicates, on one hand, that In-rich oreforming fluids are the material basis for the formation of In-rich deposits, and, on the other hand, tin probably played a very important role in the transport and enrichment of indium.
文摘The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) to trace the source of ore-forming materials. Meanwhile, the REE compositions of the deposit ore, granite and metamorphic wall rock were also considered for comparative studies in detail. The range of ∑REE of quartz and pyrite from the deposit ores is 4.18 × 10^-6- 30.91 × 10^-6, the average of ∑REE is 13.39 × 10^-6, and the average of ∑REE of quartz in the Laowan granite is 6.68 × 10^-6. There is no distinct difference of REE parameters between the deposit ore quartz and granite quartz. The quartz in gold deposit has the same REE particular parameters as quartzes from Laowan granite, such as δEu, δCe, (La/Yb)N and (La/Sm)N, partition degree of LREE to HREE, especially, the chondrite-normalized REE patterns, but no similarity to those from metamorphic wall rock, which shows that ore-forming hydrothermal fluid is mainly the fluid coming from the Laowan granite magma, rather than metamorphic fluid. Meanwhile, comparison studies on REE features between minerals from the deposit ores and related geological bodies in the deposit show that REE characteristics of minerals can serve as an indicator of ore-forming fluid properties and sources, while the REE characteristics of the bulk samples (such as deposit ores, granites and wall rocks) can not trace the source of the ore-forming materials exactly.
基金This Project is supported by the National Natural Science Foundation (No. 40502011, 40372048 and 40425006).
文摘REE abundances in sulfides from the Huize Zn-Pb ore field were determined with the ICPMS after preconcentration. The REE abundances in 26 sulfide samples (including pyrite, galena and sphalerite) are very low, with the ~REE ranging from 1.6×10^-9 to 166.8×10^-9. Their LREE/HREE ratios range from 7.6 to 98, showing LREE enrichment relatively. The JEu values are below 1, indicating that they were deposited from an Eu-depleted and reducing fluid-system. Similar to the ore-hosting carbonate strata, calcite separates from carbonate veinlets filling in the fractures or faults crosscutting the carbonate strata also show clear Eu-depletion. This indicates that the carbonate veinlets and their parent fluid was possibly sourced from the strata and inherited the REE geochemical features of the strata. Therefore, REE-geochemical characteristics of both the sulfides and calcites, which were deposited from an ore-forming hydrothermal system, are similar to those of carbonate strata, and strongly suggest that the ore metals were mainly sourced from carbonate strata.
基金The authors acknowledge the support of the National Key Basic Research Project No.G1999043206“Advanced School Key Teachers Supporting Program”of the Ministry of Education,the National Climbing Program of China No.95-pre-25 and 95-pre-39the“100 Trans-Century Science and Technology Talented Persons Cultivating Program”Foundation of the Ministry of Land and Mineral Resources No.9808.
文摘Based on an analysis of the fractal structures and mass transport mechanism of typical shear-fluid-ore formation system, the fractal dispersion theory of the fluid system was used in the dynamic study of the ore formation system. The model of point-source diffusive illuviation of the shear-fluid-ore formation system was constructed, and the numerical simulation of dynamics of the ore formation system was finished. The result shows that: (1) The metallogenic system have nested fractal structure. Different fractal dimension values in different systems show unbalance and inhomogeneity of ore-forming processes in the geohistory. It is an important parameter to symbolize the process of remobilization and accumulation of ore-forming materials. Also it can indicate the dynamics of the metallogenic system quantitatively to some extent. (2) In essence, the fractal dispersive ore-forming dynamics is a combination of multi-processes dominated by fluid dynamics and supplemented by molecule dispersion in fluids and fluid-rock interaction. It changes components and physico-chemical properties of primary rocks and fluids, favouring deposition and mineralization of ore-forming materials. (3) Gold ore-forming processes in different types of shear zones are quite different. (1) In a metallogenic system with inhomogeneous volumetric change and inhomogeneous shear, mineralization occurs in structural barriers in the centre of a shear zone and in geochemical barriers in the shear zone near its boundaries. But there is little possibility of mineralization out of the shear zone. (2) As to a metallogenic system with inhomogeneous volumetric change and simple shear, mineralization may occur only in structural barriers near the centre of the shear zone. (3) In a metallogenic system with homogeneous volumetric change and inhomogeneous shear, mineralization may occur in geochemical barriers both within and out of the shear zone.
基金granted by the China State Mineral Resources Investigation Program(Grant No. 1212011121117)the National Natural Science Foudation of China(Grant No.41102050)the Central University Fund(310827153407)
文摘The Mayuan stratabound Pb-Zn deposit in Nanzheng,Shaanxi Province,is located in the northern margin of the Yangtze Plate,in the southern margin of the Beiba Arch.The orebodies are stratiform and hosted in breciated dolostone of the Sinian Dengying Formation.The ore minerals are primarily sphalerite and galena,and the gangue minerals comprise of dolomite,quartz,barite,calcite and solid bitumen.Fluid inclusions from ore-stage quartz and calcite have homogenization tempreatures from 98 to 337℃ and salinities from 7.7 wt%to 22.2 wt%(NaCl equiv.).The vapor phase of the inclusions is mainly composed of CH_4 with minor CO_2 and H_2S.The δD_(fluid) values of fluid inclusions in quartz and calcite display a range from-68‰ to-113‰(SMOW),and the δ^(18)O_(fluid)values calculated from δ^(18)O_(quartz) and δ^(18)O_(calcite) values range from 4.5‰ to 16.7‰(SMOW).These data suggest that the ore-forming fluids may have been derived from evaporitic sea water that had reacted with organic matter.The δ^(13)C_(CH4) values of CH_4 in fluid inclusions range from-37.2‰ to-21.0‰(PDB),suggesting that the CH_4 in the ore-forming fluids was mainly derived from organic matter.This,together with the abundance of solid bitumen in the ores,suggest that organic matter played an important role in mineralization,and that the thermochemical sulfate reduction(TSR) was the main mechanism of sulfide precipitation.The Mayuan Pb-Zn deposit is a carbonate-hosted epigenetic deposit that may be classified as a Mississippi Valley type(MVT) deposit.
文摘Fluorite is one of the main gangue minerals in the Maoniuping REE deposit, Sichuan Province, China. Fluorite with different colors occurs not only within various orebodies, but also in wallrocks of the orefield. Based on REE geochemistry, fluorite in the orefleld can be classified as the LREE-rich, LREE-flat and LREE-depleted types. The three types of fluorite formed at different stages from the same hydrothermal fluid source, with the LREE-rich fluorite forming at the relatively early stage, the LREE-flat fluorite in the middle, and the LREE-depleted fluorite at the latest stage. Various lines of evidence demonstrate that the variation of the REE contents of fluorite shows no relation to the color. The mineralization of the Maouiuping REE deposit is associated spatially and temporally with carbonatite-syenite magmatism and the ore-forming fluids are mainly derived from carbonatite and syenite melts.
基金the National NaturalScience Foundation of China(Grant No.40272048)thegeological survey project of the Ministry of Land andResource(Grant No.K1.4-2-2)+1 种基金the Anhui Provincial Exccllent Youth Science and Technology Foundation(04045063) the Anhui Provincial Natural Scicnce Foundation(Grant No.01045202).
文摘Obvious differences in mineralization characteristics exist between the southern and northern parts of the eastern part of the Jiangnan Uplift in northern Jiangxi Province and southern Anhui Province. The regional metallogeny is discussed, and the ore-forming fluid systems are classified in this article. It is proposed that the fluid ore-forming activities in the Jiangnan Uplift both in northern Jiangxi and southern Anhui have close relationships with the crust-mantle interaction and magmatic-tectonic activities. The types and scales of the mineralization on the both sides of the eastern Jiangnan Uplift were determined by fluid ore-forming systems and geological backgrounds.
基金financially supported by the State Basic Research Plan(973 project)(No.2011CB403100)IGCP/SIDA-600 project
文摘The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less researches have addressed these deposits,and the genesis of the Zhaxikang deposit is still controversial.Based on field investigation,petrographic,microthermometric,Laser Raman Microprobe(LRM) and SEM/EDS analyses of fluid,melt-fluid,melt and solid inclusions in quartz and beryl from pegmatite,this paper documents the characteristics and the evolution of primary magmatic fluid which was genetically related to greisenization,pegmatitization,and silification in the area.The results show that the primary magmatic fluids were derived from unmixing between melt and fluid and underwent a phase separation process soon after the exsolution.The primary magmatic fluids are of low salinity,high temperature,and can be approximated by the H_2O-NaCl-CO_2 system.The presence of Mn-Fe carbonate in melt-fluid inclusions and a Zn-bearing mineral(gahnite) trapped in beryl and in inclusions from pegmatite indicates high Mn,Fe,and Zn concentrations in the parent magma and magmatic fluids,and implies a genetic link between pegmatite and Pb-Zn-Sb mineralization.High B and F concentrations in the parent magma largely lower the solidus of the magma and lead to late fluid exsolution,thus the primary magmatic fluids related to pegmatite have much lower temperature than those in most porphyry systems.Boiling of the primary magmatic fluids leads to high-salinity and high-temperature fluids which have high capacity to transport Pb,Zn and Sb.The decrease in temperature and mixing with fluids from other sources may have caused the precipitation of Pb-Zn-Sn(Au) minerals in the distal fault systems surrounding the causative intrusion.
基金funded by the projects of China Geological Survey (Grant Nos. DD20160123 (DD-16-049, D1522), 12120114020901, 1212011220928 and 1212011121075)
文摘The Chalukou porphyry Mo deposit, located in the Great Hinggan Range, is the largest Mo deposit in northeast China, although the age and genesis of the associated magmatic intrusions remain debated.Here we report zircon U-Pb ages and trace elements, whole rock geochemistry and Sre Nd isotope data with a view to understand the relationship between the magmatism and molybdenum mineralization.Zircon U-Pb analysis yield an age of 475 Ma for rhyolite in the older strata, 168 Ma for the premineralization monzogranite, and 154 Ma for the syn-mineralization granite porphyry. The granite porphyry and quartz porphyry are considered as the ore-forming intrusions. These rocks are peraluminous, alkali-calcic, and belong to high-K to shoshonitic series with a strong depletion of Eu. They also display characteristics of I-type granites. The rocks exhibit wide variations of(87 Sr/86 Sr)iin the range of 0.705426 -0.707363, and ε_(Nd)(t) of -3.7 to 0.93. Zircon REE distribution patterns show characteristics between crust and the mantle, implying magma genesis through crust-mantle interaction. The Fe_2O_3/FeO values(average 1) for the whole rock and EuN/Eu*Nvalues(average 0.45), Ce^(4+)/Ce^(3+) values(average 301)for zircon grains from the granite porphyry are higher than those from other lithologies. These features suggest that the ore-forming intrusions(syn-mineralization porphyry) had higher oxygen fugacity conditions than those of the pre-mineralization and post-mineralization rocks. The Chalukou Mo deposit formed in relation to the southward subduction of the Mongol-Okhotsk Ocean. Our study suggests that the subduction-related setting, crust-mantle interaction, and the large-scale magmatic intrusion were favorable factors to generate the super-large Mo deposits in this area.
文摘The NaCl-H_2O binary system is a major component of solutions coexisting with ores. Observation ofsaturated solutions of NaCl-H_2O by using the method of hydrothermal diamond anvil cell (HDAC) is a new approach tothe study of ore-forming fluids. The salinities of NaCl-H_2O solutions in experimental observation are in a range of 32-55%. The observed temperature range is 25℃-850℃, and the pressure range 1 atm-10 kb. In this temperature-pressure range, the supercritical single phase, two phases (L,V) close to the critical state and two-phased (L+V) immis-cible region were observed. And for the salinity of 35% the two phase L+V immiscible region of NaCl-H_2O solutionwas observed in a range of 253-720℃. Another temperature range, 400-817℃, was observed for the immiscible two-phased region of 50% salinity solution. In the high-temperature part of the two-phased immiscible region, the phase na-ture is very unstable. A "critical phenomenon" was observed when the heating path was very close to the critical state.It is possible to observe a 'critical phenomenon': an "explosion" occurred almost constantly at the interface between theliquid and vapour and the interface is rather obscure. A continuous transition between phases L and V could be foundin the immiscible L+V phase while heating continuously. Moreover, as the NaCl-H_2O solution was separated into liq-uid and vapour phases, static charges surrounding each vapour bubble could be seen, and these bubbles were attractedtogether by the static charges to form a special solution structure. Besides, critical states of different salinities of NaCl-H_2O were observed in order to study the properties of the fluids occurring in the rocks in the earth interior, the origin ofore-bearing fluids and the significance of supercritical fluid with respect to the ore formation. The comparison of the sa-linity data of the fluid inclusions in the minerals of ore deposits with observations of NaCl-H_2O under HDAC in theconditions of high temperatures and pressures, combined with further thermodynamic analysis of ore-formation condi-tions would explain in depth the factors determining the ore formation.
基金funded by the third subject of National Natural Science Foundation of China(41302060)Geological Survey Project(12120114001304,121201004000150012)
文摘The Jiama deposit is a large copper deposit in Tibet. Mineralization occurs in three different host rocks: skarn, hornfels and porphyry. A detailed fluid inclusion study was conducted for veins in the different host rocks to investigate the relationship between fluid evolution and ore-forming processes. Based on examination of cores from 36 drill holes, three types of veins (A, B and D) were identified in the porphyries, four types (I, II, III and IV) in the skarn, and three (a, b and c) in the hornfels. The crosscutting relationships of the veins and that of the host rocks suggest two hydrothermal stages, one early and one late stage. Fluid inclusions indicate that the Jiama hydrothermal fluid system underwent at least two episodes of fluid boiling. The first boiling event occurred during the early hydrothermal stage, as recorded by fluid inclusions hosted in type A veins in the porphyries, type a veins in the hornfels, and wollastonite in the skarns. This fluid boiling event was associated with relatively weak mineralization. The second boiling event occurred in the late hydrothermal stage, as determined from fluid inclusions hosted in type B and D veins in the porphyries, type I to IV veins in the skarns, and type b and c veins in the hornfels. This late boiling event, together with mixing with meteoric water, was responsible for more than 90% of the metal accumulation in the deposit. The first boiling only occurred in the central part of the deposit and the second boiling event took place across an entire interlayered structural zone between hornfels and marble. A spatial zoning of ore-elements is evident, and appears to be related to different migration pathways and precipitation temperatures of Cu, Mo, Pb, Zn, Au and Ag.