The equations of motion governing the vibration of a cantilever beam with partially treated self-sensing active constrained layer damping treatment(SACLD) are derived by application of the extended Hamilton principle....The equations of motion governing the vibration of a cantilever beam with partially treated self-sensing active constrained layer damping treatment(SACLD) are derived by application of the extended Hamilton principle. The assumed-modes method and closed loop velocity feedback control law are used to analyze and control the flexural vibration of the beam nle influences of the bonding layer and piezoelectric layer thickness, material properties, placements of the Diezoelectric patch and feedback control parameters on the actuation ability of the vibration suppression are investigated. Some design considerations for pure passive, pure active control, and self-sensing active constrained layer damping are discussed.展开更多
A mathematical model of kinetics of carbide layer formed on the surface of steel in fused system was set up with the theory of non-stable diffusion mass transfer and regular solution sub-lattice. This model was analyz...A mathematical model of kinetics of carbide layer formed on the surface of steel in fused system was set up with the theory of non-stable diffusion mass transfer and regular solution sub-lattice. This model was analyzed and testified by the experiments in which the VC layers were formed on four kinds of steels as steel 45,4Cr5MoSiV1,T10, and Cr12MoV immersed in the V_2O_5-Na_2O-B_2O_5 fused system with the reducing agent of silicon.The results showed that there was a good agreement between the model and the experimental results;the growth speed of carbide layer depended on the factors of carbon activity in substrate, treatment temperature,kinds of carbides and its structure etc.展开更多
This paper investigates the effect of porosity on active damping of geometrically nonlinear vibrations(GNLV)of the magneto-electro-elastic(MEE)functionally graded(FG)plates incorporated with active treatment constrict...This paper investigates the effect of porosity on active damping of geometrically nonlinear vibrations(GNLV)of the magneto-electro-elastic(MEE)functionally graded(FG)plates incorporated with active treatment constricted layer damping(ATCLD)patches.The perpendicularly/slanted reinforced 1-3 piezoelectric composite(1-3 PZC)constricting layer.The constricted viscoelastic layer of the ATCLD is modeled in the time-domain using Golla-Hughes-Mc Tavish(GHM)technique.Different types of porosity distribution in the porous magneto-electro-elastic functionally graded PMEE-FG plate graded in the thickness direction.Considering the coupling effects among elasticity,electrical,and magnetic fields,a three-dimensional finite element(FE)model for the smart PMEE-FG plate is obtained by incorporating the theory of layer-wise shear deformation.The geometric nonlinearity adopts the von K arm an principle.The study presents the effects of a variant of a power-law index,porosity index,the material gradation,three types of porosity distribution,boundary conditions,and the piezoelectric fiber’s orientation angle on the control of GNLV of the PMEE-FG plates.The results reveal that the FG substrate layers’porosity significantly impacts the nonlinear behavior and damping performance of the PMEE-FG plates.展开更多
By surface mechanical attrition treatment(SMAT),a gradient nano structure(GNS) from the surface to center was generated in the AZ31 alloy sheet.The tribological behavior of AZ31 alloy with GNS was systematically i...By surface mechanical attrition treatment(SMAT),a gradient nano structure(GNS) from the surface to center was generated in the AZ31 alloy sheet.The tribological behavior of AZ31 alloy with GNS was systematically investigated by using dry sliding tests,a 3D surface profile-meter and a scanning electron microscope equipped with an energy-dispersive spectrometer.The experimental results indicate that the Mg alloy with GNS exhibits better wear resistance comparing to the as-received sample,which is associated to the alteration of wear mechanism at different sliding speeds.The Mg alloy with GNS presents the wear mechanism of the abrasive wear at 0.05 m/s and the oxidative wear at 0.5 m/s,respectively.Moreover,the GNS can effectively promote the reaction between the oxygen and worn surface,which leads to a compact oxidation layer at 0.5 m/s.The effect of oxidation layer on the wear resistance of the Mg alloy was also discussed.展开更多
In this study, the effect of heat treatment on the room temperature strength of W-core Si C fiber produced by chemical vapor deposition(CVD) was investigated. Thermal exposure in the temperature range of 900–1000?...In this study, the effect of heat treatment on the room temperature strength of W-core Si C fiber produced by chemical vapor deposition(CVD) was investigated. Thermal exposure in the temperature range of 900–1000?C decreases the strength of the Si C fiber. Fracture morphology analysis indicates that failure initiations predominantly take place at the W-core/Si C interface. A reaction layer that formed at the W-core/Si C interface during thermal exposure degraded the fiber strength and an empirical linear relationship of strength vs thickness of the reaction layer can be obtained. The kinetics of the growth of the W-core/Si C reaction layer were determined.展开更多
基金the National Natural Science Foundation of China(No.59635140)
文摘The equations of motion governing the vibration of a cantilever beam with partially treated self-sensing active constrained layer damping treatment(SACLD) are derived by application of the extended Hamilton principle. The assumed-modes method and closed loop velocity feedback control law are used to analyze and control the flexural vibration of the beam nle influences of the bonding layer and piezoelectric layer thickness, material properties, placements of the Diezoelectric patch and feedback control parameters on the actuation ability of the vibration suppression are investigated. Some design considerations for pure passive, pure active control, and self-sensing active constrained layer damping are discussed.
文摘A mathematical model of kinetics of carbide layer formed on the surface of steel in fused system was set up with the theory of non-stable diffusion mass transfer and regular solution sub-lattice. This model was analyzed and testified by the experiments in which the VC layers were formed on four kinds of steels as steel 45,4Cr5MoSiV1,T10, and Cr12MoV immersed in the V_2O_5-Na_2O-B_2O_5 fused system with the reducing agent of silicon.The results showed that there was a good agreement between the model and the experimental results;the growth speed of carbide layer depended on the factors of carbon activity in substrate, treatment temperature,kinds of carbides and its structure etc.
文摘This paper investigates the effect of porosity on active damping of geometrically nonlinear vibrations(GNLV)of the magneto-electro-elastic(MEE)functionally graded(FG)plates incorporated with active treatment constricted layer damping(ATCLD)patches.The perpendicularly/slanted reinforced 1-3 piezoelectric composite(1-3 PZC)constricting layer.The constricted viscoelastic layer of the ATCLD is modeled in the time-domain using Golla-Hughes-Mc Tavish(GHM)technique.Different types of porosity distribution in the porous magneto-electro-elastic functionally graded PMEE-FG plate graded in the thickness direction.Considering the coupling effects among elasticity,electrical,and magnetic fields,a three-dimensional finite element(FE)model for the smart PMEE-FG plate is obtained by incorporating the theory of layer-wise shear deformation.The geometric nonlinearity adopts the von K arm an principle.The study presents the effects of a variant of a power-law index,porosity index,the material gradation,three types of porosity distribution,boundary conditions,and the piezoelectric fiber’s orientation angle on the control of GNLV of the PMEE-FG plates.The results reveal that the FG substrate layers’porosity significantly impacts the nonlinear behavior and damping performance of the PMEE-FG plates.
基金National Key Research and Development Program(No.2016YFB0701201)National Natural Science Foundation of China(Nos.51671101,51464034)+3 种基金Natural Science foundation of Jiangxi Province(No.20161ACB21003)the Scientific Research Foundation of the Education Department of Jiangxi Province(No.GJJ150010)the financial support provided by the Croucher Foundation(No.9500006)Hong Kong Collaborative Research Fund(CRF)Scheme(No.C4028-14G)
文摘By surface mechanical attrition treatment(SMAT),a gradient nano structure(GNS) from the surface to center was generated in the AZ31 alloy sheet.The tribological behavior of AZ31 alloy with GNS was systematically investigated by using dry sliding tests,a 3D surface profile-meter and a scanning electron microscope equipped with an energy-dispersive spectrometer.The experimental results indicate that the Mg alloy with GNS exhibits better wear resistance comparing to the as-received sample,which is associated to the alteration of wear mechanism at different sliding speeds.The Mg alloy with GNS presents the wear mechanism of the abrasive wear at 0.05 m/s and the oxidative wear at 0.5 m/s,respectively.Moreover,the GNS can effectively promote the reaction between the oxygen and worn surface,which leads to a compact oxidation layer at 0.5 m/s.The effect of oxidation layer on the wear resistance of the Mg alloy was also discussed.
基金the Raman Spectroscopy Laboratory of Institute of Metal Research, Chinese Academy of Sciences for the support in the accomplishment of this paper
文摘In this study, the effect of heat treatment on the room temperature strength of W-core Si C fiber produced by chemical vapor deposition(CVD) was investigated. Thermal exposure in the temperature range of 900–1000?C decreases the strength of the Si C fiber. Fracture morphology analysis indicates that failure initiations predominantly take place at the W-core/Si C interface. A reaction layer that formed at the W-core/Si C interface during thermal exposure degraded the fiber strength and an empirical linear relationship of strength vs thickness of the reaction layer can be obtained. The kinetics of the growth of the W-core/Si C reaction layer were determined.