Cu-Al/Al nanostructured metallic multilayers with Al layer thickness hAl varying from 5 to 100 nm were prepared, and their mechanical properties and deformation behaviors were studied by nanoindentation testing. The r...Cu-Al/Al nanostructured metallic multilayers with Al layer thickness hAl varying from 5 to 100 nm were prepared, and their mechanical properties and deformation behaviors were studied by nanoindentation testing. The results showed that the hardness increased drastically with decreasing hAl down to about 20 nm, whereafter the hardness reached a plateau that approaches the hardness of the alloyed Cu-Al monolithic thin films. The strain rate sensitivity (SRS, m), however, decreased monotonically with reducing hAl. The layer thickness-dependent strengthening mechanisms were discussed, and it was revealed that the alloyed Cu-Al nanolayers dominated at hAl≤ 20 nm, while the crystalline Al nanolayers dominated at hAl 〉 20 nm. The plastic deformation was mainly related to the ductile Al nanolayers, which was responsible for the monotonic evolution of SRS with hAl. In addition, the hAFdependent hardness and SRS were quanti- tatively modeled in light of the strengthening mechanisms at different length scales.展开更多
The layer-dependent properties are still unclarified in two-dimensional(2D)vertical heterostructures.In this study,we layer-bylayer deposited semimetalβ-In2Se3 on monolayer MoS2 to form verticalβ-In2Se3/MoS2 heteros...The layer-dependent properties are still unclarified in two-dimensional(2D)vertical heterostructures.In this study,we layer-bylayer deposited semimetalβ-In2Se3 on monolayer MoS2 to form verticalβ-In2Se3/MoS2 heterostructures by chemical vapor deposition.The defect-mediated nucleation mechanism inducesβ-In2Se3 nanosheets to grow on monolayer MoS2,and the layer number of stackedβ-In2Se3 can be precisely regulated from 1 layer(L)to 13 L by prolonging the growth time.Theβ-In2Se3/MoS2 heterostructures reveal tunable type-Ⅱband alignment arrangement by altering the layer number ofβ-In2Se3,which optimizes the internal electron transfer.Meanwhile,the edge atomic structure ofβ-In2Se3 stacking on monolayer MoS2 shows the reconstruction derived from large lattice mismatch(~29%),and the presence ofβ-In2Se3 also further increases the electrical conductivity ofβ-In2Se3/MoS2 heterostructures.Attributed to abundant layer-dependent edge active sites,edge reconstruction,improved hydrophilicity,and high electrical conductivity ofβ-In2Se3/MoS2 heterostructures,the edge ofβ-In2Se3/MoS2 heterostructures exhibits excellent electrocatalytic hydrogen evolution performance.Lower onset potential and smaller Tafel slope can be observed at the edge of monolayer MoS2 coupled with 13-Lβ-In2Se3.Hence,the outstanding conductive layers coupled with edge reconstruction in 2D vertical heterostructures play decisive roles in the optimization of electron energy levels and improvement of layer-dependent catalytic performance.展开更多
We investigated the thickness effect on the photophysics and charge carrier kinetics of graphitic carbon nitride nanoflakes (g-CNN) by using ultraviolet visible diffuse reflectance spectroscopy, atomic force microsc...We investigated the thickness effect on the photophysics and charge carrier kinetics of graphitic carbon nitride nanoflakes (g-CNN) by using ultraviolet visible diffuse reflectance spectroscopy, atomic force microscopy, femtosecond transient absorption spectroscopy, and picosecond time-correlated single photon counting measurement. For the first time, we found that g-CNN displays a layer-dependent indirect bandgap and layer-dependent charge carrier kinetics.展开更多
To achieve a stable, sensitive, and high-efficiency biological probe, a novel NaYF4:Yb,Er nanocrystals/TiO2 inverse opal composite film was designed by self-assembly and solvent evaporation methods. 32-fold enhanced ...To achieve a stable, sensitive, and high-efficiency biological probe, a novel NaYF4:Yb,Er nanocrystals/TiO2 inverse opal composite film was designed by self-assembly and solvent evaporation methods. 32-fold enhanced upconversion(UC) emission was investigated under 980 nm excitation. According to size-dependency, excitation power density-dependency as well as photonic stop band(PSB)-dependency upconversion spectra, the enhancement mechanism of the composite film was put down to the stochastical diffraction of IOPCs multi-layered structure to the excitation laser. On the basis of the enhancement effect of the composite film, energy transfer between upconversion nanoparticles(UCNPs) and quantum dots(QDs), and the sensitive sensing of CdTe QDs on mercury, the UC composite film was used for sensing of Hg^2+ in serum. The solid sensor as a mercury detector owns lots of superiorities such as feasible operation, good linear relationship(R=0.997), low limit of detection(70.5 nmol/L) and thus may have broad prospects in the biosensing field.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.5132100351322104and 51201123)+5 种基金the National Basic Research Program of China(Grant No.2010CB631003)the 111 Project of China(Grant No.B06025)the support from the Fundamental Research Funds for the Central Universitiesthe Tengfei Scholar projectthe Natural Science Basic Research Plan in Shaanxi Province of China(Program No.2015JM5158)the Shaanxi Province Postdoctoral Scientific Research Project for partial financial support
文摘Cu-Al/Al nanostructured metallic multilayers with Al layer thickness hAl varying from 5 to 100 nm were prepared, and their mechanical properties and deformation behaviors were studied by nanoindentation testing. The results showed that the hardness increased drastically with decreasing hAl down to about 20 nm, whereafter the hardness reached a plateau that approaches the hardness of the alloyed Cu-Al monolithic thin films. The strain rate sensitivity (SRS, m), however, decreased monotonically with reducing hAl. The layer thickness-dependent strengthening mechanisms were discussed, and it was revealed that the alloyed Cu-Al nanolayers dominated at hAl≤ 20 nm, while the crystalline Al nanolayers dominated at hAl 〉 20 nm. The plastic deformation was mainly related to the ductile Al nanolayers, which was responsible for the monotonic evolution of SRS with hAl. In addition, the hAFdependent hardness and SRS were quanti- tatively modeled in light of the strengthening mechanisms at different length scales.
基金The work was supported by the National Natural Science Foundation of China(Nos.22175060 and 21975067)Natural Science Foundation of Hunan Province of China(Nos.2021JJ10014 and 2021JJ30092)+1 种基金X.X.X thanks to the National Science Foundation of China(No.12104385)The computational resources were provided by the supercomputer TianHe in Changsha,China.
文摘The layer-dependent properties are still unclarified in two-dimensional(2D)vertical heterostructures.In this study,we layer-bylayer deposited semimetalβ-In2Se3 on monolayer MoS2 to form verticalβ-In2Se3/MoS2 heterostructures by chemical vapor deposition.The defect-mediated nucleation mechanism inducesβ-In2Se3 nanosheets to grow on monolayer MoS2,and the layer number of stackedβ-In2Se3 can be precisely regulated from 1 layer(L)to 13 L by prolonging the growth time.Theβ-In2Se3/MoS2 heterostructures reveal tunable type-Ⅱband alignment arrangement by altering the layer number ofβ-In2Se3,which optimizes the internal electron transfer.Meanwhile,the edge atomic structure ofβ-In2Se3 stacking on monolayer MoS2 shows the reconstruction derived from large lattice mismatch(~29%),and the presence ofβ-In2Se3 also further increases the electrical conductivity ofβ-In2Se3/MoS2 heterostructures.Attributed to abundant layer-dependent edge active sites,edge reconstruction,improved hydrophilicity,and high electrical conductivity ofβ-In2Se3/MoS2 heterostructures,the edge ofβ-In2Se3/MoS2 heterostructures exhibits excellent electrocatalytic hydrogen evolution performance.Lower onset potential and smaller Tafel slope can be observed at the edge of monolayer MoS2 coupled with 13-Lβ-In2Se3.Hence,the outstanding conductive layers coupled with edge reconstruction in 2D vertical heterostructures play decisive roles in the optimization of electron energy levels and improvement of layer-dependent catalytic performance.
基金Financial supports by the National Natural Science Foundation of China (No. 21373269)the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China(No. 10XNJ047)
文摘We investigated the thickness effect on the photophysics and charge carrier kinetics of graphitic carbon nitride nanoflakes (g-CNN) by using ultraviolet visible diffuse reflectance spectroscopy, atomic force microscopy, femtosecond transient absorption spectroscopy, and picosecond time-correlated single photon counting measurement. For the first time, we found that g-CNN displays a layer-dependent indirect bandgap and layer-dependent charge carrier kinetics.
基金Project supported by National Natural Science Foundation of China(11374044)Fundamental Research Funds for the Central Universities(3132016333,3132017058)+1 种基金Doctor Start-up Funds of Liaoning Province(201601067)China Postdoctoral Science Foundation(2016M591420)
文摘To achieve a stable, sensitive, and high-efficiency biological probe, a novel NaYF4:Yb,Er nanocrystals/TiO2 inverse opal composite film was designed by self-assembly and solvent evaporation methods. 32-fold enhanced upconversion(UC) emission was investigated under 980 nm excitation. According to size-dependency, excitation power density-dependency as well as photonic stop band(PSB)-dependency upconversion spectra, the enhancement mechanism of the composite film was put down to the stochastical diffraction of IOPCs multi-layered structure to the excitation laser. On the basis of the enhancement effect of the composite film, energy transfer between upconversion nanoparticles(UCNPs) and quantum dots(QDs), and the sensitive sensing of CdTe QDs on mercury, the UC composite film was used for sensing of Hg^2+ in serum. The solid sensor as a mercury detector owns lots of superiorities such as feasible operation, good linear relationship(R=0.997), low limit of detection(70.5 nmol/L) and thus may have broad prospects in the biosensing field.