期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of leachate recycling and inoculation on the biochemical characteristics of municipal refuse in landfill bioreactors 被引量:4
1
作者 ShenDS HeR 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第3期406-412,共7页
Activity development of key groups of enzymes involved in municipal refuse decomposition was measured in laboratory landfill bioreactors with and without leachate recycling and inoculation for about 210 days. The resu... Activity development of key groups of enzymes involved in municipal refuse decomposition was measured in laboratory landfill bioreactors with and without leachate recycling and inoculation for about 210 days. The results showed that the enzymes (amylase, protease, cellulase, lipase and pectinase) were present in fresh refuse but at low values and positively affected by leachate recycling and refuse inoculation. The total average of cellulase activity in digesters D3 operated with leachate recycling but no inoculation, D4 and D5 operated with leachate recycling and inoculation was much higher than that in digesters D1 and D2 without leachate recycling and inoculation by 88%—127%, 117%—162% and 64%—98%. The total average of protease activity was higher in digester D4 than that in digesters D1, D2, D3 and D5 by 63%, 39%, 24% and 24%, respectively, and the positive effect of leachate recycling and inoculation on protease activity of landfilled refuse mainly was at the first two months. The total average of amylase activity was higher in digesters D3, D4 and D5 than that in digesters D1 and D2 by 83%—132%, 96%—148% and 81%—129%. During the early phase of incubation, the stimulatory effect of inoculation on lipase activity was measured, but refuse moisture was the main factor affecting lipase activity of landfilled refuse. The inoculation, initial and continuous inoculation of microorganisms existing in leachate, was the mainly stimulatory factor affecting pectinase activity of landfilled refuse. 展开更多
关键词 municipal refuse landfill bioreactor leachate recycle inoculation enzyme activity biochemical characteristics
下载PDF
Landfill leachate treatment in assisted landfill bioreactor 被引量:3
2
作者 HE Pin-jing QU Xian +1 位作者 SHAO Li-ming LEE Duu-jong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第1期176-179,共4页
Landfill is the major disposal route of municipal solid waste(MSW) in most Asian countries. Leachate from landfill presents a strong wastewater that needs intensive treatment before discharge. Direct recycling was p... Landfill is the major disposal route of municipal solid waste(MSW) in most Asian countries. Leachate from landfill presents a strong wastewater that needs intensive treatment before discharge. Direct recycling was proposed as an effective alternative for leachate treatment by taking the landfill as a bioreactor. This process was proved not only considerably reducing the pollution potential of leachate, but also enhancing organic degradation in the landfill. However, as this paper shows, although direct leachate recycling was effective in landfilled MSW with low food waste fraction (3.5%, w/w), it failed in MSW containing 54% food waste, as normally noted in Asian countries. The initial acid stuck would inhibit methanogenesis to build up, hence strong leachate was yielded from landfill to threaten the quality of receiving water body. We demonstrated the feasibility to use an assisted bioreactor landfill, with a well-decomposed refuse layer as ex-situ anaerobic digester to reducing COD loading in leachate. By doing so, the refuse in simulated landfill column (2.3 m high) could be stabilized in 30 weeks while the COD in leachate reduced by 95%(61000 mg/L to 3000 mg/L). Meanwhile, the biogas production was considerably enhanced, signaling by the much greater amount and much higher methane content in the biogas. 展开更多
关键词 BIOREACTOR LANDFILL leachate recycling ORGANICS enhancement leachate PRETREATMENT
下载PDF
Effect of Inoculation with Effective Microorganisms and Leachate Recycle on Degradation of Municipal Refuse 被引量:1
3
作者 沈东升 何若 朱荫湄 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期277-281,共5页
Biodegradation of waste in landfill is a slow process requiring decades for completion. Accelerated degradation of municipal refuse in modulated landfill environments may alleviate or eliminate pollution to the land, ... Biodegradation of waste in landfill is a slow process requiring decades for completion. Accelerated degradation of municipal refuse in modulated landfill environments may alleviate or eliminate pollution to the land, water and air. In this work, nineteen effective microorganisms (EMs) were isolated from old landfill refuse by enrichment culturing techniques and used for the inoculum of municipal refuse. The preliminary experiments demonstrate that a combination of EMs inoculation in landfill with leachate recycle resulted in increased rates of decomposition and faster process stability. The concentrations of COD, VFA and SO4^2- in digester with EMs inoculation and leachate recycle decreased more rapidly than others. Gas production from digester with EMs inoculation and leachate recycle commenced around 32 days, which is a week shorter than with leachate recycle only. And peak cumulative gas production was obtained much earlier in digester with EMs inoculation and leachate recycle (150 days) compared to 180 days with leachate recycle only. Moreover, in the first two months, the rate of settlement in digester with EMs inoculation and leachate recycle was more rapid than others. 展开更多
关键词 municipal refuse LANDFILL leachate recycle effective microorganisms inoculation
下载PDF
Hydrometallurgical recycling of NdF eB magnets: Complete leaching, iron removal and electrolysis 被引量:7
4
作者 Mehmet Ali Recai Onal Chenna Rao Borra +2 位作者 Muxing Guo Bart Blanpain Tom Van Gerven 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第6期574-584,共11页
NdFeB magnets currently dominate the magnet market. Supply risks of certain rare earth metals(REM), e.g. Nd and Dy, impose efficient recycling schemes that are applicable to different types and compositions of these... NdFeB magnets currently dominate the magnet market. Supply risks of certain rare earth metals(REM), e.g. Nd and Dy, impose efficient recycling schemes that are applicable to different types and compositions of these magnets with minimum use of chemicals and waste generation. In this study, a hydrometallurgical method was studied that could be adjusted to recover not only REM, but also other valuable metals(e.g.Co, Ni and Cu) that co-existed in the magnet. The magnet powders were completely dissolved in a dilute sulfuric acid solution giving more than 98% of dissolved iron in the ferrous state. Chemical oxidation of Fe-(2+) into Fe-(3+) by the addition of MnO 2 required only 1 h at ambient temperature. It was then possible to precipitate more than 99% of this ferric iron by adjusting the pH of the solution above 3 with either Ca(OH)2 or MnO additions. However, the addition of Ca(OH)2 resulted in the formation of gypsum and up to ca. 23% REM losses, possibly via co-precipitation into the gypsum. MnO elevated the Mn-(2+) concentration in the solution. However, it was found to be problematic that subsequent direct electrolysis removed Mn and Co. Low anodic current efficiencies(ACE) resulted in high energy consumption(EC), while incomplete Mn and Co removals and undesired REM losses were reported. Pre-electrolysis removals of REM and/or Co by oxalate and/or sulfide precipitation were proven to be successful and selective, but this enlarged the flowsheet considerably with only minor improvement of the Mn removal, ACE and EC. 展开更多
关键词 electrolysis magnet recycling precipitate leaching anodic subsequent ferrous dissolved leachate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部