The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 2...The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 200 r/min,the effect of gas film diffusion on manganese extraction efficiency could be neglected,and the kinetic behavior was investigated under the condition of elimination of external diffusion influence on the leaching process.Effects of leaching temperature,mass ratio of cellulose and ore,and the sulfuric acid concentration on manganese extraction efficiency were discussed.The kinetic data were analyzed based on the shrinking core model,which indicated that the leaching process was dominated by both ash layer diffusion and chemical reaction at the initial stage,with the progress of leaching reaction,the rate-controlling step switched to the ash layer diffusion.It was also concluded that the sulfuric acid concentration had the most significant influence on the leaching rate,the reaction orders with respect to the sulfuric acid concentration were 2.102 in the first 60 min,and 3.642 in the later 90 min,while the reaction orders for mass ratio of cellulose and ore were 0.660 and 0.724,respectively.An Arrhenius relationship was used to relate the temperature to the rate of leaching,from which apparent activation energies were calculated to be 46.487 kJ/mol and 62.290 kJ/mol at the two stages,respectively.Finally,the overall leaching rate equations for the manganese dissolution reaction with cellulose in sulphuric acid solution were developed.The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of SEM and XRD analyses.展开更多
Reduction roasting-acid leaching process was utilized to process high-iron-content manganese oxide ore using black charcoal as reductant. The results indicate that, compared with the traditional reductant of anthracit...Reduction roasting-acid leaching process was utilized to process high-iron-content manganese oxide ore using black charcoal as reductant. The results indicate that, compared with the traditional reductant of anthracite, higher manganese extraction efficiency is achieved at lower roasting temperature and shorter residence time. The effects of roasting parameters on the leaching efficiency of Mn and Fe were studied, and the optimal parameters are determined as follows: roasting temperature is 650 °C, residence time is 40 min, and black charcoal dosage is 10%(mass fraction). Under these conditions, the leaching efficiency of Mn reaches 82.37% while that of Fe is controlled below 7%. XRD results show that a majority of MnO2 and Fe2O3 in the raw ore are reduced to MnO and Fe3O4, respectively.展开更多
In order to utilize low-grade manganese ore resources effectively, a hydrometallurgical process was developed for manganese extraction in dilute sulfuric acid medium, and the kinetics of leaching manga- nese was also ...In order to utilize low-grade manganese ore resources effectively, a hydrometallurgical process was developed for manganese extraction in dilute sulfuric acid medium, and the kinetics of leaching manga- nese was also investigated. At room temperature, manganese from low-grade manganese carbonate ores was extracted by sulfuric acid leaching without reductants. During the extracting process, single-factor analysis method was used to evaluate the effects of grinding fineness, sulfuric acid concentration, liquid-to-solid ratio, agitation rate and leaching time on the leaching efficiencies of Mn and Fe. The optimal leaching conditions are determined as coarse particles of below 2 mm size (without ball-milling), sulfuric acid concentration of 0.86 mol/L, liquid-to-solid ratio of 5:1, agitation rate of 150 r/rain and leaching for 180 min at room temperature. Under the optimal conditions, the leaching efficiencies of Mn and Fe are 96.21g and 13.35%, respectively. In addition, through the experiments at different temper- atures, it is found that the leaching process follows the shrinking core model under the conditions of changing acid concentration and intermittent reaction device. Moreover, the apparent activations of effective diffusion and chemical reaction in the kinetic model are calculated to be 18.83 and 27.15 kJ/mol, respectively.展开更多
P2-type layered oxides with the general Na-deficient composition Na_(x)TMO_(2)(x<1,TM:transition metal)are a promising class of cathode materials for sodium-ion batteries.The open Na+transport pathways present in t...P2-type layered oxides with the general Na-deficient composition Na_(x)TMO_(2)(x<1,TM:transition metal)are a promising class of cathode materials for sodium-ion batteries.The open Na+transport pathways present in the structure lead to low diffusion barriers and enable high charge/discharge rates.However,a phase transition from P2 to O2 structure occurring above 4.2 V and metal dissolution at low potentials upon discharge results in rapid capacity degradation.In this work,we demonstrate the positive effect of configurational entropy on the stability of the crystal structure during battery operation.Three different compositions of layered P2-type oxides were synthesized by solid-state chemistry,Na_(0.67)(Mn_(0.55)Ni_(0.21)Co_(0.24))O_(2),Na_(0.67)(Mn_(0.45)Ni_(0.18)Co_(0.24)Ti_(0.1)Mg_(0.03))O_(2) and Na_(0.67)(Mn_(0.45)Ni_(0.18)Co_(0.18)Ti_(0.1)Mg_(0.03)Al_(0.04)Fe_(0.02))O_(2) with low,medium and high configurational entropy,respectively.The high-entropy cathode material shows lower structural transformation and Mn dissolution upon cycling in a wide voltage range from 1.5 to 4.6 V.Advanced operando techniques and post-mortem analysis were used to probe the underlying reaction mechanism thoroughly.Overall,the high-entropy strategy is a promising route for improving the electrochemical performance of P2 layered oxide cathodes for advanced sodium-ion battery applications.展开更多
基金Project(2010FJ1011)supported by the Major Project of Science and Technology of Hunan Province,China
文摘The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 200 r/min,the effect of gas film diffusion on manganese extraction efficiency could be neglected,and the kinetic behavior was investigated under the condition of elimination of external diffusion influence on the leaching process.Effects of leaching temperature,mass ratio of cellulose and ore,and the sulfuric acid concentration on manganese extraction efficiency were discussed.The kinetic data were analyzed based on the shrinking core model,which indicated that the leaching process was dominated by both ash layer diffusion and chemical reaction at the initial stage,with the progress of leaching reaction,the rate-controlling step switched to the ash layer diffusion.It was also concluded that the sulfuric acid concentration had the most significant influence on the leaching rate,the reaction orders with respect to the sulfuric acid concentration were 2.102 in the first 60 min,and 3.642 in the later 90 min,while the reaction orders for mass ratio of cellulose and ore were 0.660 and 0.724,respectively.An Arrhenius relationship was used to relate the temperature to the rate of leaching,from which apparent activation energies were calculated to be 46.487 kJ/mol and 62.290 kJ/mol at the two stages,respectively.Finally,the overall leaching rate equations for the manganese dissolution reaction with cellulose in sulphuric acid solution were developed.The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of SEM and XRD analyses.
基金Project(2013JSJJ028)supported by the Teachers’Research Fund of Central South University,ChinaProject supported by Co-Innovation Center for Clean and Efficient Utilization of Strategic Mineral Resources,China
文摘Reduction roasting-acid leaching process was utilized to process high-iron-content manganese oxide ore using black charcoal as reductant. The results indicate that, compared with the traditional reductant of anthracite, higher manganese extraction efficiency is achieved at lower roasting temperature and shorter residence time. The effects of roasting parameters on the leaching efficiency of Mn and Fe were studied, and the optimal parameters are determined as follows: roasting temperature is 650 °C, residence time is 40 min, and black charcoal dosage is 10%(mass fraction). Under these conditions, the leaching efficiency of Mn reaches 82.37% while that of Fe is controlled below 7%. XRD results show that a majority of MnO2 and Fe2O3 in the raw ore are reduced to MnO and Fe3O4, respectively.
基金the Key Laboratory of Resources of Nonferrous Metals Ministry of Education (Central South University) for the laboratories and financial support
文摘In order to utilize low-grade manganese ore resources effectively, a hydrometallurgical process was developed for manganese extraction in dilute sulfuric acid medium, and the kinetics of leaching manga- nese was also investigated. At room temperature, manganese from low-grade manganese carbonate ores was extracted by sulfuric acid leaching without reductants. During the extracting process, single-factor analysis method was used to evaluate the effects of grinding fineness, sulfuric acid concentration, liquid-to-solid ratio, agitation rate and leaching time on the leaching efficiencies of Mn and Fe. The optimal leaching conditions are determined as coarse particles of below 2 mm size (without ball-milling), sulfuric acid concentration of 0.86 mol/L, liquid-to-solid ratio of 5:1, agitation rate of 150 r/rain and leaching for 180 min at room temperature. Under the optimal conditions, the leaching efficiencies of Mn and Fe are 96.21g and 13.35%, respectively. In addition, through the experiments at different temper- atures, it is found that the leaching process follows the shrinking core model under the conditions of changing acid concentration and intermittent reaction device. Moreover, the apparent activations of effective diffusion and chemical reaction in the kinetic model are calculated to be 18.83 and 27.15 kJ/mol, respectively.
基金financial support from the China Scholarship Council(CSC)financial support by Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germany’s Excellence Strategy,EXC 2154,project number 390874152+8 种基金financial support from the Federal Ministry of Education and Research(Bundesministerium für Bildung und Forschung,BMBF)under the project‘KaSiLi’(03XP0254D)in the competence cluster‘Excell-BattMat’financial support from the Helmholtz Association(DigiBat project)support by the German Research Foundation(to H H,Grant No.HA 1344/43-1)is gratefully acknowledgedsupport from EnABLES and EPISTORE,projects funded by the European Union’s Horizon 2020 research and innovation program under Grant Agreement No.730957 and 101017709,respectivelyfunding from the Kera-Solar project(Carl Zeiss Foundation)support at beamline P65 of the PETRA Ⅲ synchrotron(Deutsches Elektronen-Synchrotron DESY,Hamburg,Germany)is gratefully acknowledgedEduard Arzt(INM)for his continuing supportAndrea Jung(INM)for her support on ICP-OES measurementsthe support from the Karlsruhe Nano Micro Facility(KNMF,www.knmf.kit.edu),a Helmholtz research infrastructure at Karlsruhe Institute of Technology(KIT,www.kit.du).
文摘P2-type layered oxides with the general Na-deficient composition Na_(x)TMO_(2)(x<1,TM:transition metal)are a promising class of cathode materials for sodium-ion batteries.The open Na+transport pathways present in the structure lead to low diffusion barriers and enable high charge/discharge rates.However,a phase transition from P2 to O2 structure occurring above 4.2 V and metal dissolution at low potentials upon discharge results in rapid capacity degradation.In this work,we demonstrate the positive effect of configurational entropy on the stability of the crystal structure during battery operation.Three different compositions of layered P2-type oxides were synthesized by solid-state chemistry,Na_(0.67)(Mn_(0.55)Ni_(0.21)Co_(0.24))O_(2),Na_(0.67)(Mn_(0.45)Ni_(0.18)Co_(0.24)Ti_(0.1)Mg_(0.03))O_(2) and Na_(0.67)(Mn_(0.45)Ni_(0.18)Co_(0.18)Ti_(0.1)Mg_(0.03)Al_(0.04)Fe_(0.02))O_(2) with low,medium and high configurational entropy,respectively.The high-entropy cathode material shows lower structural transformation and Mn dissolution upon cycling in a wide voltage range from 1.5 to 4.6 V.Advanced operando techniques and post-mortem analysis were used to probe the underlying reaction mechanism thoroughly.Overall,the high-entropy strategy is a promising route for improving the electrochemical performance of P2 layered oxide cathodes for advanced sodium-ion battery applications.