For revealing the ore sources of the Dachang tin?polymetallic ore deposit, the lead isotopes were analyzed systematically by using the single minerals of sulphides, including pyrite, pyrrhotite, sphalerite, and galena...For revealing the ore sources of the Dachang tin?polymetallic ore deposit, the lead isotopes were analyzed systematically by using the single minerals of sulphides, including pyrite, pyrrhotite, sphalerite, and galena. Then, the mineral sources and their characteristics were discussed based on the classical lead isotope discriminating model. The results show that the lead isotope ratios of206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb range from 17.478 to 18.638, 15.440 to 15.858, and 37.556 to 39.501, respectively. According to Zartman lead model, the ore lead contains the upper crust composition; however, the granite does not provide all ore leads, and other material sources exist. Obviously, the ore deposit belongs to the result of the combined effect of crust?mantle. The source rocks are characterized by a certain degree of similarity with the island arc material. Moreover, its distant origin in the upper and lower crusts may be related to the subduction island arc material or oceanic crust. The mantle-derived material may have a certain status in the source region. Meanwhile, based on the lead isotope three-dimensional topology projection vectors, the ore leads are concentrated in zoneA, which indicates the characteristics of Yangtze lead isotope province and a possible genetic relationship with Yangtze block.展开更多
The heavy metal(such as Cr,Ni,Cu,Cd,Pb,and Zn)concentration,speciation,and pollution source in 43 sediment samples from the Xiangjiang River were investigated using sequential extraction combined with Pb isotope analy...The heavy metal(such as Cr,Ni,Cu,Cd,Pb,and Zn)concentration,speciation,and pollution source in 43 sediment samples from the Xiangjiang River were investigated using sequential extraction combined with Pb isotope analysis.Cu,Cd,Pb,and Zn concentrations are higher than their background values,while Cr and Ni concentrations are close to those.Sequential extraction demonstrates that heavy metals have different fractions,showing different bioavailabilities.The w(206Pb)/w(207Pb)ratio increases with decreasing bioavailability in the order of exchangeable<carbonate≈Fe-Mn oxides≈organic<residual(p<0.05).Wastewater,dust,and slag from mining and smelting areas,and the residual Pb are assumed to be the primary anthropogenic and natural sources of Pb,respectively.The percentages of anthropogenic Pb in the exchangeable,carbonate,Fe-Mn oxides,and organic fractions are(91.5±16.7)%,(61.1±13.9)%,(57.4±11.1)%,and(55.5±11.2)%,respectively,suggesting a significant input of anthropogenic Pb in these four fractions.展开更多
Lead(Pb)isotopes have been extensively employed in tracing sources of Pb and its transport pathways through the environment.However,Pb isotopic ratios in related geochemical reference materials are scarce.Here,we repo...Lead(Pb)isotopes have been extensively employed in tracing sources of Pb and its transport pathways through the environment.However,Pb isotopic ratios in related geochemical reference materials are scarce.Here,we report high-precision Pb isotopic ratios measured by Nu Plasma II MC-ICP-MS using calibrated ^(205)Tl/^(203)Tl=2.38865(NIST SRM 997)for mass discrimination correction.The long-term external precision(2SD)for NISTSRM 981 of Pb,BCR-2,and BHVO-2 are 0.31‰(n=105),0.42‰(n=11),and 0.25‰(n=5)for ^(208)Pb/ ^(206)Pb and 0.16‰,0.53‰,and 0.07‰for ^(206)Pb/ ^(207)Pb,both respectively,and their Pb isotopic ratios are in excellent agreement with the recommended values.Using this method,we report for the first time Pb isotopic compositions in shale SGR-1b(USGS);coal CLB-1(USGS);stream sediments GSD-17,-21,and-23(IGGE);soils GSS-12,-13,-14,-15,and-16(IGGE);plants GSV-1,-2,and-3(IGGE);and human hair GSH-1(IGGE).展开更多
The Penjom Gold Mine is located 30 km from the Bentong-Raub Suture at the western boundary of the Central Belt in Peninsular Malaysia. Gold mineralization hosted within the vein system is associated with pyrite, arsen...The Penjom Gold Mine is located 30 km from the Bentong-Raub Suture at the western boundary of the Central Belt in Peninsular Malaysia. Gold mineralization hosted within the vein system is associated with pyrite, arsenopyrite, and minor base metals including galena. Trace element and lead isotope analysis was undertaken on nine samples that represent two stages of galena formed during two tectonic events. Both the Pb isotopes and the trace elements show that the first stage galena within the mineralized areas at the footwall has different geochemical characteristics compared with galena in non mineralized areas in the hanging wall, suggesting that galena crystallized from two different ore fluids and probably at two different times. Higher Te, Se and Bi in the galena from the mineralized area may indicate hydrothermal fluids that migrate through the structural conduit and leached out the metal along the pathway that consist of dominant carbonaceous unit. The Pb isotopic ratio composition are transitional between the bulk crustal growth and an upper crustal growth curve, indicating that derivation was from arc rocks associated with continental crust or a crustal source that includes arc volcanic and old continental sedimentary rocks.展开更多
Pb isotope ratios and their variation have been measured and explained on ores of massive S-Fe-Au depos-its hosted in the Middle-Upper Carboniferous, on feldspars from diorite bodies closely related tomineralization a...Pb isotope ratios and their variation have been measured and explained on ores of massive S-Fe-Au depos-its hosted in the Middle-Upper Carboniferous, on feldspars from diorite bodies closely related tomineralization and on whole rocks from ore-hosting strata (carbonate rocks) in the Tongling area, Anhui Prov-ince. Through a comparison of Pb isotope features of these geological bodies, it has been suggested that oresubstances of the deposits were derived from ore-hosting strata. In the meanwhile, the measurement of ore Pbisotopes of different mineralization types of the same deposit indicates that different mineralization types havedistinct Pb isotope characteristics, showing the potentiality of the Pb isotopic method used in mineral explora-tion.展开更多
To investigate equilibrium mercury(Hg)and lead(Pb)isotope fractionation caused by the nuclear volume effect(NVE)in crystals,the electron densities at nuclei(i.e.,|Ψ(0)|2)for Hg-or Pb-bearing crystalline compounds wer...To investigate equilibrium mercury(Hg)and lead(Pb)isotope fractionation caused by the nuclear volume effect(NVE)in crystals,the electron densities at nuclei(i.e.,|Ψ(0)|2)for Hg-or Pb-bearing crystalline compounds were investigated by using the relativistic spin orbit zeroth-order regular approximation(ZORA)method with a three-dimensional periodic boundary condition based on the density functional theory(DFT).Many isotope fractionation factors of crystalline compounds are provided for the first time.Our results show,even at1000℃,NVE-driven Hg and Pb isotope fractionation are meaningfully large,i.e.,range from 0.12‰to 0.49‰(202Hg/^(198)Hg),from-0.20‰to 0.17‰(208Pb/^(206)Pb)and from-0.08‰to 0.06‰(207Pb/^(206) Pb)relative to Hg0 vapor and Pb0 vapor,respectively.Specifically,the fractionations range from-0.06‰to-0.20‰(208Pb/^(206)Pb)and from-0.02‰to-0.08‰(207Pb/^(206)Pb)for Pb2+-bearing species,from 0.10‰to 0.17‰(208Pb/^(206)Pb)and from 0.04‰to 0.06‰(207Pb/^(206)Pb)for Pb4+-bearing species in crystals.All calculated Hg-bearing species in crystals will enrich heavier isotope(202Hg)relative to Hg0 vapor.Meanwhile,Pb4+-bearing species enrich heavier Pb isotopes(208Pb and 207Pb)than Pb^(2+)-bearing species in crystals,which the enrichment can be up to 0.37‰(208-Pb/^(206)Pb)and 0.14‰(207Pb/^(206)Pb)at 1000℃,due to their NVEs are in opposite directions.The NVE-driven MIFs of Hg isotopes,which are compared to the Hg202-Hg198baseline,are up to-0.158‰(ΔNV199Hg),-0.024‰(ΔNV200Hg)and-0.094‰(ΔNV201Hg)relative to Hg0 vapor at5000 C.For all studied Hg-bearing species in crystals,the MIFs of two odd-mass isotopes(i.e.,ΔNV199Hg andΔNV201Hg)will be changed proportionally and their ratio(i.e.,ΔNV199Hg/ΔNV201Hg)will be a constant 1.67.The NVE can also cause mass-independent fractionations for 207Pb and 204 Pb compared to the baseline of 208Pb and 206Pb.The largest NVEdriven MIFs are 0.043‰(ΔNV207Pb)and-0.040‰(ΔNV204Pb)among all the studied species relative to Pb0 vapor at 5000 C.The magnitudes of odd-mass isotope MIF(ΔNV207Pb)and even-mass isotope MIF(ΔNV204Pb)are almost the same but with opposite signs,leading to the MIF ratio of them(i.e.,ΔNV207Pb/ΔNV204Pb)is-1.08.展开更多
The Zaibian mafic-ultramafic rock is located in the transitional zone of the Yangtze craton and south China fold system,where is the southwest of Jiangnan orogenic belt(Zeng et al.,2003;Wang et al.,in press).
The Dajiangping pyrite deposit located in the middle sector of the Yunkai uplift in western Guangdong is a stratiform sulphide deposit occurring in Sinian marine clastic and fine clastic rocks. The formation of the de...The Dajiangping pyrite deposit located in the middle sector of the Yunkai uplift in western Guangdong is a stratiform sulphide deposit occurring in Sinian marine clastic and fine clastic rocks. The formation of the deposit was related to submarine exhalation and hot brine deposition. A part of it was reformed by late-stage hydrothermal solution. The δ34S values of pyrite vary from - 25.55‰ to +21.07‰, which are inversely proportional to the content of organic carbon in ore and pyrite. Passing from striped fine-grained pyrite ore to massive coarse-grained pyrite ore, i.e. from south to north, the sulphur isotopic composition changes from the light sulphur-enriched one to the heavy sulphur-enriched one. The lead isotopic composition of striped ore is consistent with that of the country rocks of orebodies and the lead is radiogenic lead derived from the upper crust. The lead isotopic composition of massive ore is relatively homogeneous and its 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios are a bit lower than those of striped ore;the lead result from mixing of synsedimentary ore lead with that derived from basement migmatlte brought by late-stage hydrothermal solutions.展开更多
The Hatu gold deposit is the largest historical gold producer of the West Junggar,western China,with an Au reserve of about 62 t.The orebodies were controlled by NE-,EW-,and NW-trending subsidiary faults associated wi...The Hatu gold deposit is the largest historical gold producer of the West Junggar,western China,with an Au reserve of about 62 t.The orebodies were controlled by NE-,EW-,and NW-trending subsidiary faults associated with the Anqi fault.This deposit exhibits characteristics typical of a fault-controlled lode system,and the orebodies consist of auriferous quartz veins and altered wall rocks within Early Carboniferous volcano-sedimentary rocks.Three stages of mineralization have been identified in the Hatu gold deposit:the early pyrite-albite-quartz stage,the middle polymetallic sulfides-ankerite-quartz stage,and late quartz-calcite stage.The sulfur isotopic values of pyrite and arsenopyrite vary in a narrow range from-0.8‰to1.3‰and an average of 0.4‰,the near-zeroδ~(34)S values implicate the thorough homogenization of the sulfur isotopes during the metamorphic dehydration of the Early Carboniferous volcano-sedimentary rocks.Lead isotopic results of pyrite and arsenopyrite(^(206)Pb/^(204)Pb=17.889-18.447,^(207)Pb/^(204)Pb=15.492-15.571,^(208)Pb/^(204)Pb=37.802-38.113)are clustered between orogenic and mantle/upper crust lines,indicating that the lead was mainly sourced from the hostrocks within the Early Carboniferous Tailegula Formation.The characteristics of S and Pb isotopes suggest that the ore-forming metals of the Hatu orogenic gold deposit are of metamorphogenic origin,associated with the continental collision between the Yili-Kazakhstan and Siberian plates during the Late Carboniferous.展开更多
The Bainiuchang deposit in Yunnan Province, China, is located geographically between the Gejiu ore field and the Dulong ore field. In addition to the 〉7000 t Ag reserves, the deposit also boasts of large-scale Pb, Zn...The Bainiuchang deposit in Yunnan Province, China, is located geographically between the Gejiu ore field and the Dulong ore field. In addition to the 〉7000 t Ag reserves, the deposit also boasts of large-scale Pb, Zn and Sn reserves with a lot of dispersed elements (In, Cd, Ge, Ga, etc.). We have determined systematically the Pb isotope composition of the deposit. The Pb isotope ratios of the ores that are of sea-floor exhalative sedimentary origin in the northwest of the mining district, are 206pb/204pb = 17.758-18.537, 207pb/204pb = 15.175-15.862 and 206pb/204pb = 37.289-39.424, while those of ores that are of magmatic hydrothermal superimposition origin in the southeast of the mining district, are 206pb/204pb = 17.264-18.359, 207pb/204pb = 14.843-15.683 and 208pb/204pb = 36.481-38.838, respectively. In terms of the Pb isotope composition of feldspar in magmatic rocks or magmatic whole- rock samples from the mining district, we have determined the Pb isotope composition and acquired the Pb isotope ratios as: 206pb/204pb -- 18.224-18.700, 207pb/204pb -- 15.595-15.797 and 208pb/204pb -- 38.193-39.608. Then, in the light of the Pb isotope composition of metamorphic rock samples from the Proterozoic basement exposed in the Dulong ore field, we have determined the Pb isotope composition and obtained the isotope ratios as: 206pb/204pb -- 18.434-19.119, 207pb/204pb -- 15.644-15.693, and 208pb/204pb = 38.514-38.832. And the Pb isotope ratios of Cambrian sedimentary rocks, which are exposed in the Bainiuchang mining district, are 206pb/204pb = 18.307-19.206, 207pb/204pb = 15.622-15.809, and 208pb/204pb = 38.436-39.932. By comparing the two types of ores with respect to their Pb isotope compositions, it is indicated that lead in the Bainiuchang deposit was derived largely from the lower-crust granulite which is earlier than Neoproterozoic in age, but the Yanshanian magmatic hydrothermal fluids probably provided a part of ore-forming elements such as Sn for the ore blocks in the south of the mining district.展开更多
Central Fujian Rift is another new and important volcanogenic massive sulfide Pb-Zn polymetallic metallogenetic belt. In order to find out the material genesis and mineralization period of Meixian-type Pb-Zn-Ag deposi...Central Fujian Rift is another new and important volcanogenic massive sulfide Pb-Zn polymetallic metallogenetic belt. In order to find out the material genesis and mineralization period of Meixian-type Pb-Zn-Ag deposits, S and Pb isotope analysis and isotope geochronology of ores and wall rocks for five major deposits are discussed. It is concluded that the composition of sulfur isotope from sulfide ore vary slightly in different deposits and the mean value is close to zero with the 834S ranging from -3.5‰ to +5.6‰ averaging at +2.0‰, which indicates that the sulfur might originate from magma or possibly erupted directly from volcano or was leached from ore-hosted volcanic rock. The lead from ores in most deposits displays radioactive genesis character (206pb/204pb〉18.140, 207Pb/204pb〉15.584, 208pb/204pb〉38.569) and lead isotope values of ores are higher than those of wall rocks, which indicates that the lead was likely leached from the ore-hosted volcanic rocks. Based on isotope data, two significant Pb-Zn metallogenesis are delineated, which are Mid- and Late-Proterozoic sedimentary exhalative metailogenesis (The single zircon U-Pb, Sm-Nd isochronal and Ar-Ar dating ages of ore- hosted wall rocks are calculated to be among 933-1788 Ma.) and Yanshanian magmatic hydrothermal superimposed and alternated metallogenesis (intrusive SHRIMP zircon U-Pb and Rb-Sr isochronal ages between 127-154 Ma).展开更多
The use of lead, some of which is characterized by a highly radiogenic signature, sharply distinguishes Bronze Age China from the rest of Eurasia. Scholars have long hypothesized that silver can offer an independent p...The use of lead, some of which is characterized by a highly radiogenic signature, sharply distinguishes Bronze Age China from the rest of Eurasia. Scholars have long hypothesized that silver can offer an independent proxy to characterize lead minerals. The summary of silver distribution associated with Shang and Western Zhou bronzes in this paper reveals an important difference between the south(Sanxingdui, Hanzhong, Jinsha, Panlongcheng, Xin’gan) and the Central Plains. Correlating silver with lead content as well as with the isotopic signature indicates that south China and the Central Plains had different lead sources during the late Shang period, and also that the highly radiogenic and common lead used at Anyang come from geochemical environments which cannot be distinguished by the level of silver.展开更多
Lead isotopic geochemical steep-dipping zone usually exists on inhomogeneous boundaries of earth blocks. Its crossing with the geophysical gradient zone often convergently occurs at giant deposits. Deep structures or ...Lead isotopic geochemical steep-dipping zone usually exists on inhomogeneous boundaries of earth blocks. Its crossing with the geophysical gradient zone often convergently occurs at giant deposits. Deep structures or concealed structural planes obviously have the coupling relationship with the convergent area of mineral deposits. The geochemical steep-dipping zone is usually distributed along the boundary of ancient continental blocks. Its crossing effect with geophysical gradient zone is usually presented as depression or swell of Moho discontinuity on the crossing direction with the ancient continental margin, which would lead to form deep fractures of earth crust at block margins or lead to adjustment of earth crust texture. The deep hydrothermal liquid would rise up along the structural planes to form the convergent areas of mineral deposits. For example, Luonan- Luanchuan area in east Qinling is a typical crossed area of the geochemical steepdipping zone and geophysical gradient zone. The mineral deposit belt extends along EW direction. It was controlled by the geochemical steepdipping zone equidistantly distributed along NE direction like a string of beads controlled by a gravity gradient zone in NE direction and a mantle depression slope. Along a plunging mantle syncline on EW plunging direction, from the east to the west, checkform was distributed which controls synergic crustmantle granoporphyry rocks. Therefore, a convergent mineralization area of Mo, W, Zn and Au giant deposits occurred.展开更多
The paper systematically deals with the background of regional isotopic compo-sitions in the lower and middle reaches of the Yangtze River and neighbouring areas. It isshown that the lead isotopic compositions of diff...The paper systematically deals with the background of regional isotopic compo-sitions in the lower and middle reaches of the Yangtze River and neighbouring areas. It isshown that the lead isotopic compositions of different geological formations and units are con-trolled by the primary mantle heterogeneity, dynamic process of crust-mantle interchange,abundances of uraninm, thorium and lead of various layers of the earth and timing. Studies onthe background of regional isotopic compositions may offer significant information forgeochemical regionalization, tracing of sources of ore-forming materials, and regionalprognosis of ore deposits.展开更多
The Sinongduo mining region includes two types of mineralizations:the epithermal and the carbonate-hosted PbZn-Ag deposits.Despite being studied for many years,the ore formation process and genesis of the carbonate-ho...The Sinongduo mining region includes two types of mineralizations:the epithermal and the carbonate-hosted PbZn-Ag deposits.Despite being studied for many years,the ore formation process and genesis of the carbonate-hosted Pb-Zn-Ag deposits remain poorly understood.The Pb-Zn-Ag ore bodies occur as veins and are hosted by limestone and dolostone of the Permian Xiala Formation.Three sulfide mineralization substages have been identified at the Sinongduo carbonatehosted deposit.Indium coupled with Cu,Co and Sn was incorporated into sphalerite as substitutions:2Zn^(2+)?Cu^(+)+In^(3+),(3n/2+1)Zn^(2+)?Co^(2+)+n In^(3+)or(2n+1)Zn^(2+)?Co^(2+)+n(Cu^(+)+In^(3+))(n>1)and 4Zn^(2+)?Sn2++2In^(3+).Sphalerite and pyrite in the mineralization stage displayδ^(34)S values in a narrow range of+5.7‰to+11.3‰,which are similar to those of Palaeocene igneous rocks,indicative of a magmatic source of sulfur.We present systematic carbon-hydrogen-oxygen isotope results that further support a magmatic source for the ore-forming fluids that were influenced by meteoric water.Furthermore,the Pb isotope compositions of sulfide minerals in the Sinongduo carbonate-hosted deposit overlap with the values of coeval Linzizong volcanic rocks and are similar to those of Indian Ocean sediments,indicating upper crustal sources of metals.We conclude that the Sinongduo carbonate-hosted Pb-Zn-Ag deposit is a medium-to low-temperature magmatic-hydrothermal deposit related to Linzizong magmatism.展开更多
Texture,geochemistry,and in-situ Pb isotope of galena were investigated to probe the origin of anomalous Ag enrichment in the Dayingezhuang Au(-Ag)deposit.Silver enrichment postdates the main Au mineralization and occ...Texture,geochemistry,and in-situ Pb isotope of galena were investigated to probe the origin of anomalous Ag enrichment in the Dayingezhuang Au(-Ag)deposit.Silver enrichment postdates the main Au mineralization and occurs in the south of the Dayingezhuang deposit.It is primarily associated with galena and the exsolution of Ag-rich sulfosalts(e.g.,matildite)in distal vein-ores related to steeply dipping brittle fractures.Silver-rich galena is characterized by the least radiogenic Pb isotope signature(^(206)Pb/^(204)Pb 17.195–17.258 and ^(208)Pb/^(204)Pb 37.706–37.793),possibly indicating a metasomatized lithospheric mantle or modified lower crustal source for Pb and Ag.Both of these mafic and ultramafic source regions have been previously suggested as Au reservoirs for other Jiaodong Au deposits,implying that the metal reservoir has only a weak control on the uneven Ag-enrichment.Since the Ag-enrichment areas are located in the footwalls of both the Dayingezhuang and Zhaoping faults,the enrichment was most likely dominated by local rotational stress during coeval movements of the two faults in a NE–SW compression and NW−SE extension regime.This work highlights the shallow-crust structural deformation responsible for controlling the flow of late ore-forming fluid resulting in local anomalous metal enrichment.展开更多
The Baiyun deposit is a large gold deposit at the western end of the Liaoji rift zone in Liaoning Province, which has produced both auriferous quartz-vein type and altered-rock type mineralization. The ore bodies are ...The Baiyun deposit is a large gold deposit at the western end of the Liaoji rift zone in Liaoning Province, which has produced both auriferous quartz-vein type and altered-rock type mineralization. The ore bodies are mainly hosted in schist from the Gaixian Formation of the Liaohe Group. A detailed field geological survey showed that the quartz-vein type gold ore bodies are distributed in the near EW-trending and occur in the extensional tectonic space of schist in the Gaixian Formation, and the altered-rock type gold ore bodies are distributed in the near EW-trending structural belt and occur near in the Gaixian Formation of biotite schist, biotite granulite, marble and the upper footwall of dike. To further elucidate the source of ore-forming fluid and material in the Baiyun gold deposit, the H-O isotopes for quartz, S and Pb isotopes, in-situ trace elements for sulfides from quartz-vein and altered-rock type mineralization were studied. The H-O isotopic δD_(V-SMOW) and δ^(18)O_(H2O) values of the auriferous quartz range were from-88.8‰ to-82.2‰ and-1.95‰ to 4.85‰, respectively, suggests that the ore-forming fluids were mainly magmatic water with minor meteoric water. The distribution ranges of in-situ S isotopic compositions of Au-bearing pyrite in the quartz-vein type and altered-rock type ores were-8.38‰–-10.47‰(with average values of-7.89‰) and 11.38‰– 17.52‰(with average values of 11.55‰), respectively, indicating that the S isotopic compositions of the two ore types were clearly different. The in-situ Pb isotopic ratios changed almost uniformly, which showed that they had the same lead isotopic source. Based on the analysis of S and Pb isotopic compositions, the metallogenic materials in the Baiyun gold deposit were primarily from deep magma, and some wall rock materials may have been mixed in the metallogenic process. Co/Ni diagram shows that most Au-bearing pyrites have magmatic-hydrothermal or sedimentary alteration properties, and Au/As ratios were between 0.001 and 0.828(the average value was 0.07), indicating that the ore-forming fluid in the Baiyun gold deposit may have been deep magma. Combining the geological, trace element, and isotopic data, as well as data from previous studies, we propose that the Baiyun gold deposit is a magmatic-hydrothermal ore deposit.展开更多
An in-situ microanalysis of Pb isotopic compositions in sulfide minerals is carried out by using femtosecond laser-ablation multi-collector inductively coupled plasma mass spectrometry (fsLA-MC-ICP-MS). High-tempera...An in-situ microanalysis of Pb isotopic compositions in sulfide minerals is carried out by using femtosecond laser-ablation multi-collector inductively coupled plasma mass spectrometry (fsLA-MC-ICP-MS). High-temperature-activated carbon was used to filter Hg contained in the carrier gas, which reduced the Hg background signal by 48% and also lowered the detection limit of the analysis. Fractionation and mass discrimination effects existing in the ICP-MS analytical processes were corrected using an internal reference T1 in conjunction with an external reference NIST SRM 610. The proposed method was used to an- alyze the Pb isotopic compositions of chalcopyrite, pyrite, and sphalerite from the Dulong Sn-Zn-In polymetallic ore district. The results showed that in this ore district, the sulfide minerals and different grains of the same sulfide mineral show a large variation in Pb content up to 1000-fold. The studied pyrites show relatively higher Pb contents and homogeneous Pb isotopic compositions, whereas the sphalerites have low Pb contents but most variable Pb isotopic compositions. It is suggested that the large variation of Pb isotopic composition may reflect a late hydrothermal superimposition on the primary sulfide formation. In addition, radiogenic Pb accumulated by radioactive decay of trace amounts of U over time in the host minerals may also be one of the causes for the large variation range of Pb content and Pb isotopic composition of those low-Pb sphalerites. Chalcopyrite and sphalerite grains with Pb content greater than 10 ppm presented a consistent Pb isotopic distribution, whereas all the sulfide grains with Pb content greater than 100 ppm had consistent Pb isotopic composition within 2s measurement uncertainties. The in-situ analysis of Pb isotopic composition agreed well with the results obtained by conventional chemical methods within 2s measurement uncertainties, indicating that the data obtained by fsLA-MC-ICP-MS are reliable. Additionally, this study indicates that the Pb isotopic composition could truthfully record the source of ore-forming minerals only for sulfide minerals with high Pb content. On the contrary, the Pb isotopic composition of low-Pb sulfide minerals may be affected by trace amounts of U in the host minerals that may lead to a highly radiogenic Pb isotope ratio. Alternatively, it is also possible that late fluid metasomatic overprinting may alter the Pb isotopic compositions.展开更多
基金Project(41202051)supported by the National Natural Science Foundation of ChinaProject(S2014GK3005)supported by Hunan Industrial Science and Technology Support Program+1 种基金Project(2012M521721)supported by China Postdoctoral Science FoundationProject(CSUZC2013021)supported by the Open-end Fund for the Valuable and Precision Instruments of Central South University,China
文摘For revealing the ore sources of the Dachang tin?polymetallic ore deposit, the lead isotopes were analyzed systematically by using the single minerals of sulphides, including pyrite, pyrrhotite, sphalerite, and galena. Then, the mineral sources and their characteristics were discussed based on the classical lead isotope discriminating model. The results show that the lead isotope ratios of206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb range from 17.478 to 18.638, 15.440 to 15.858, and 37.556 to 39.501, respectively. According to Zartman lead model, the ore lead contains the upper crust composition; however, the granite does not provide all ore leads, and other material sources exist. Obviously, the ore deposit belongs to the result of the combined effect of crust?mantle. The source rocks are characterized by a certain degree of similarity with the island arc material. Moreover, its distant origin in the upper and lower crusts may be related to the subduction island arc material or oceanic crust. The mantle-derived material may have a certain status in the source region. Meanwhile, based on the lead isotope three-dimensional topology projection vectors, the ore leads are concentrated in zoneA, which indicates the characteristics of Yangtze lead isotope province and a possible genetic relationship with Yangtze block.
基金Project(2009ZX07212-001)supported by the Major Science and Technology Program for Water Pollution Control and Treatment of ChinaProject(51079002)supported by the National Natural Science Foundation of China
文摘The heavy metal(such as Cr,Ni,Cu,Cd,Pb,and Zn)concentration,speciation,and pollution source in 43 sediment samples from the Xiangjiang River were investigated using sequential extraction combined with Pb isotope analysis.Cu,Cd,Pb,and Zn concentrations are higher than their background values,while Cr and Ni concentrations are close to those.Sequential extraction demonstrates that heavy metals have different fractions,showing different bioavailabilities.The w(206Pb)/w(207Pb)ratio increases with decreasing bioavailability in the order of exchangeable<carbonate≈Fe-Mn oxides≈organic<residual(p<0.05).Wastewater,dust,and slag from mining and smelting areas,and the residual Pb are assumed to be the primary anthropogenic and natural sources of Pb,respectively.The percentages of anthropogenic Pb in the exchangeable,carbonate,Fe-Mn oxides,and organic fractions are(91.5±16.7)%,(61.1±13.9)%,(57.4±11.1)%,and(55.5±11.2)%,respectively,suggesting a significant input of anthropogenic Pb in these four fractions.
基金supported by National Key Basic Research Program of China(2014CB238903)the National Natural Science Foundation of China(Nos.41473028,41673017,U1612441)the Opening Fund of State Key Laboratory of Environmental Geochemistry(SKLEG2015201)
文摘Lead(Pb)isotopes have been extensively employed in tracing sources of Pb and its transport pathways through the environment.However,Pb isotopic ratios in related geochemical reference materials are scarce.Here,we report high-precision Pb isotopic ratios measured by Nu Plasma II MC-ICP-MS using calibrated ^(205)Tl/^(203)Tl=2.38865(NIST SRM 997)for mass discrimination correction.The long-term external precision(2SD)for NISTSRM 981 of Pb,BCR-2,and BHVO-2 are 0.31‰(n=105),0.42‰(n=11),and 0.25‰(n=5)for ^(208)Pb/ ^(206)Pb and 0.16‰,0.53‰,and 0.07‰for ^(206)Pb/ ^(207)Pb,both respectively,and their Pb isotopic ratios are in excellent agreement with the recommended values.Using this method,we report for the first time Pb isotopic compositions in shale SGR-1b(USGS);coal CLB-1(USGS);stream sediments GSD-17,-21,and-23(IGGE);soils GSS-12,-13,-14,-15,and-16(IGGE);plants GSV-1,-2,and-3(IGGE);and human hair GSH-1(IGGE).
基金partly supported by a University of Malaya research grant(PV095-2012A)
文摘The Penjom Gold Mine is located 30 km from the Bentong-Raub Suture at the western boundary of the Central Belt in Peninsular Malaysia. Gold mineralization hosted within the vein system is associated with pyrite, arsenopyrite, and minor base metals including galena. Trace element and lead isotope analysis was undertaken on nine samples that represent two stages of galena formed during two tectonic events. Both the Pb isotopes and the trace elements show that the first stage galena within the mineralized areas at the footwall has different geochemical characteristics compared with galena in non mineralized areas in the hanging wall, suggesting that galena crystallized from two different ore fluids and probably at two different times. Higher Te, Se and Bi in the galena from the mineralized area may indicate hydrothermal fluids that migrate through the structural conduit and leached out the metal along the pathway that consist of dominant carbonaceous unit. The Pb isotopic ratio composition are transitional between the bulk crustal growth and an upper crustal growth curve, indicating that derivation was from arc rocks associated with continental crust or a crustal source that includes arc volcanic and old continental sedimentary rocks.
文摘Pb isotope ratios and their variation have been measured and explained on ores of massive S-Fe-Au depos-its hosted in the Middle-Upper Carboniferous, on feldspars from diorite bodies closely related tomineralization and on whole rocks from ore-hosting strata (carbonate rocks) in the Tongling area, Anhui Prov-ince. Through a comparison of Pb isotope features of these geological bodies, it has been suggested that oresubstances of the deposits were derived from ore-hosting strata. In the meanwhile, the measurement of ore Pbisotopes of different mineralization types of the same deposit indicates that different mineralization types havedistinct Pb isotope characteristics, showing the potentiality of the Pb isotopic method used in mineral explora-tion.
基金supported by National Natural Science Foundation of China (NSFC) projects (41703012)Qinghai Science and Technology projects (2018-ZJ-956Q)+2 种基金the supports of the Strategic Priority Research Program (B) of CAS (XDB18010100, XDB41000000)pre-research Project on Civil Aerospace Technologies No. D020202 funded by the Chinese National Space AdministrationNSFC projects (41530210)。
文摘To investigate equilibrium mercury(Hg)and lead(Pb)isotope fractionation caused by the nuclear volume effect(NVE)in crystals,the electron densities at nuclei(i.e.,|Ψ(0)|2)for Hg-or Pb-bearing crystalline compounds were investigated by using the relativistic spin orbit zeroth-order regular approximation(ZORA)method with a three-dimensional periodic boundary condition based on the density functional theory(DFT).Many isotope fractionation factors of crystalline compounds are provided for the first time.Our results show,even at1000℃,NVE-driven Hg and Pb isotope fractionation are meaningfully large,i.e.,range from 0.12‰to 0.49‰(202Hg/^(198)Hg),from-0.20‰to 0.17‰(208Pb/^(206)Pb)and from-0.08‰to 0.06‰(207Pb/^(206) Pb)relative to Hg0 vapor and Pb0 vapor,respectively.Specifically,the fractionations range from-0.06‰to-0.20‰(208Pb/^(206)Pb)and from-0.02‰to-0.08‰(207Pb/^(206)Pb)for Pb2+-bearing species,from 0.10‰to 0.17‰(208Pb/^(206)Pb)and from 0.04‰to 0.06‰(207Pb/^(206)Pb)for Pb4+-bearing species in crystals.All calculated Hg-bearing species in crystals will enrich heavier isotope(202Hg)relative to Hg0 vapor.Meanwhile,Pb4+-bearing species enrich heavier Pb isotopes(208Pb and 207Pb)than Pb^(2+)-bearing species in crystals,which the enrichment can be up to 0.37‰(208-Pb/^(206)Pb)and 0.14‰(207Pb/^(206)Pb)at 1000℃,due to their NVEs are in opposite directions.The NVE-driven MIFs of Hg isotopes,which are compared to the Hg202-Hg198baseline,are up to-0.158‰(ΔNV199Hg),-0.024‰(ΔNV200Hg)and-0.094‰(ΔNV201Hg)relative to Hg0 vapor at5000 C.For all studied Hg-bearing species in crystals,the MIFs of two odd-mass isotopes(i.e.,ΔNV199Hg andΔNV201Hg)will be changed proportionally and their ratio(i.e.,ΔNV199Hg/ΔNV201Hg)will be a constant 1.67.The NVE can also cause mass-independent fractionations for 207Pb and 204 Pb compared to the baseline of 208Pb and 206Pb.The largest NVEdriven MIFs are 0.043‰(ΔNV207Pb)and-0.040‰(ΔNV204Pb)among all the studied species relative to Pb0 vapor at 5000 C.The magnitudes of odd-mass isotope MIF(ΔNV207Pb)and even-mass isotope MIF(ΔNV204Pb)are almost the same but with opposite signs,leading to the MIF ratio of them(i.e.,ΔNV207Pb/ΔNV204Pb)is-1.08.
基金National Basic Research Program of China(No.2007CB411402)Cooperation Program of Institute of Geochemistry and Guizhou Geology and Minerals Bureau 102 Geology Group
文摘The Zaibian mafic-ultramafic rock is located in the transitional zone of the Yangtze craton and south China fold system,where is the southwest of Jiangnan orogenic belt(Zeng et al.,2003;Wang et al.,in press).
基金This research was supported by the Open Research Laboratory on Geochemistry of Mineral Deposit,Academia Sinica
文摘The Dajiangping pyrite deposit located in the middle sector of the Yunkai uplift in western Guangdong is a stratiform sulphide deposit occurring in Sinian marine clastic and fine clastic rocks. The formation of the deposit was related to submarine exhalation and hot brine deposition. A part of it was reformed by late-stage hydrothermal solution. The δ34S values of pyrite vary from - 25.55‰ to +21.07‰, which are inversely proportional to the content of organic carbon in ore and pyrite. Passing from striped fine-grained pyrite ore to massive coarse-grained pyrite ore, i.e. from south to north, the sulphur isotopic composition changes from the light sulphur-enriched one to the heavy sulphur-enriched one. The lead isotopic composition of striped ore is consistent with that of the country rocks of orebodies and the lead is radiogenic lead derived from the upper crust. The lead isotopic composition of massive ore is relatively homogeneous and its 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios are a bit lower than those of striped ore;the lead result from mixing of synsedimentary ore lead with that derived from basement migmatlte brought by late-stage hydrothermal solutions.
基金supported by the National Natural Science Foundation of China(Nos.42172093,42202075,and 42302108)the Key Research and Development Project of Xinjiang(No.2023B03015)+1 种基金the Uygur Autonomous Region Tianchi Talent Project,and the Natural Science Foundation of Xinjiang(No.2022D01A344)China Scholarship Council(202304180004)。
文摘The Hatu gold deposit is the largest historical gold producer of the West Junggar,western China,with an Au reserve of about 62 t.The orebodies were controlled by NE-,EW-,and NW-trending subsidiary faults associated with the Anqi fault.This deposit exhibits characteristics typical of a fault-controlled lode system,and the orebodies consist of auriferous quartz veins and altered wall rocks within Early Carboniferous volcano-sedimentary rocks.Three stages of mineralization have been identified in the Hatu gold deposit:the early pyrite-albite-quartz stage,the middle polymetallic sulfides-ankerite-quartz stage,and late quartz-calcite stage.The sulfur isotopic values of pyrite and arsenopyrite vary in a narrow range from-0.8‰to1.3‰and an average of 0.4‰,the near-zeroδ~(34)S values implicate the thorough homogenization of the sulfur isotopes during the metamorphic dehydration of the Early Carboniferous volcano-sedimentary rocks.Lead isotopic results of pyrite and arsenopyrite(^(206)Pb/^(204)Pb=17.889-18.447,^(207)Pb/^(204)Pb=15.492-15.571,^(208)Pb/^(204)Pb=37.802-38.113)are clustered between orogenic and mantle/upper crust lines,indicating that the lead was mainly sourced from the hostrocks within the Early Carboniferous Tailegula Formation.The characteristics of S and Pb isotopes suggest that the ore-forming metals of the Hatu orogenic gold deposit are of metamorphogenic origin,associated with the continental collision between the Yili-Kazakhstan and Siberian plates during the Late Carboniferous.
基金This research project was financially supported jointly by the Major Orientation Research Project (No. KZCX2- YW-111) of the CAS;the National Basic Research Program of China (No. 2007CB411408) ;the National Natural Science Foundation of China (No. 40172037).
文摘The Bainiuchang deposit in Yunnan Province, China, is located geographically between the Gejiu ore field and the Dulong ore field. In addition to the 〉7000 t Ag reserves, the deposit also boasts of large-scale Pb, Zn and Sn reserves with a lot of dispersed elements (In, Cd, Ge, Ga, etc.). We have determined systematically the Pb isotope composition of the deposit. The Pb isotope ratios of the ores that are of sea-floor exhalative sedimentary origin in the northwest of the mining district, are 206pb/204pb = 17.758-18.537, 207pb/204pb = 15.175-15.862 and 206pb/204pb = 37.289-39.424, while those of ores that are of magmatic hydrothermal superimposition origin in the southeast of the mining district, are 206pb/204pb = 17.264-18.359, 207pb/204pb = 14.843-15.683 and 208pb/204pb = 36.481-38.838, respectively. In terms of the Pb isotope composition of feldspar in magmatic rocks or magmatic whole- rock samples from the mining district, we have determined the Pb isotope composition and acquired the Pb isotope ratios as: 206pb/204pb -- 18.224-18.700, 207pb/204pb -- 15.595-15.797 and 208pb/204pb -- 38.193-39.608. Then, in the light of the Pb isotope composition of metamorphic rock samples from the Proterozoic basement exposed in the Dulong ore field, we have determined the Pb isotope composition and obtained the isotope ratios as: 206pb/204pb -- 18.434-19.119, 207pb/204pb -- 15.644-15.693, and 208pb/204pb = 38.514-38.832. And the Pb isotope ratios of Cambrian sedimentary rocks, which are exposed in the Bainiuchang mining district, are 206pb/204pb = 18.307-19.206, 207pb/204pb = 15.622-15.809, and 208pb/204pb = 38.436-39.932. By comparing the two types of ores with respect to their Pb isotope compositions, it is indicated that lead in the Bainiuchang deposit was derived largely from the lower-crust granulite which is earlier than Neoproterozoic in age, but the Yanshanian magmatic hydrothermal fluids probably provided a part of ore-forming elements such as Sn for the ore blocks in the south of the mining district.
文摘Central Fujian Rift is another new and important volcanogenic massive sulfide Pb-Zn polymetallic metallogenetic belt. In order to find out the material genesis and mineralization period of Meixian-type Pb-Zn-Ag deposits, S and Pb isotope analysis and isotope geochronology of ores and wall rocks for five major deposits are discussed. It is concluded that the composition of sulfur isotope from sulfide ore vary slightly in different deposits and the mean value is close to zero with the 834S ranging from -3.5‰ to +5.6‰ averaging at +2.0‰, which indicates that the sulfur might originate from magma or possibly erupted directly from volcano or was leached from ore-hosted volcanic rock. The lead from ores in most deposits displays radioactive genesis character (206pb/204pb〉18.140, 207Pb/204pb〉15.584, 208pb/204pb〉38.569) and lead isotope values of ores are higher than those of wall rocks, which indicates that the lead was likely leached from the ore-hosted volcanic rocks. Based on isotope data, two significant Pb-Zn metallogenesis are delineated, which are Mid- and Late-Proterozoic sedimentary exhalative metailogenesis (The single zircon U-Pb, Sm-Nd isochronal and Ar-Ar dating ages of ore- hosted wall rocks are calculated to be among 933-1788 Ma.) and Yanshanian magmatic hydrothermal superimposed and alternated metallogenesis (intrusive SHRIMP zircon U-Pb and Rb-Sr isochronal ages between 127-154 Ma).
基金This work has been partially supported by European Research Council Horizon 2020 Advanced Project FLAME(ERC AdG 670010Flow of Metal Across Eurasia).
文摘The use of lead, some of which is characterized by a highly radiogenic signature, sharply distinguishes Bronze Age China from the rest of Eurasia. Scholars have long hypothesized that silver can offer an independent proxy to characterize lead minerals. The summary of silver distribution associated with Shang and Western Zhou bronzes in this paper reveals an important difference between the south(Sanxingdui, Hanzhong, Jinsha, Panlongcheng, Xin’gan) and the Central Plains. Correlating silver with lead content as well as with the isotopic signature indicates that south China and the Central Plains had different lead sources during the late Shang period, and also that the highly radiogenic and common lead used at Anyang come from geochemical environments which cannot be distinguished by the level of silver.
基金Fund of the National Climbing Project!( 95-pre-2 5 -03 ) the Ministry of Geology and Mineral ResourcesStudying Projec
文摘Lead isotopic geochemical steep-dipping zone usually exists on inhomogeneous boundaries of earth blocks. Its crossing with the geophysical gradient zone often convergently occurs at giant deposits. Deep structures or concealed structural planes obviously have the coupling relationship with the convergent area of mineral deposits. The geochemical steep-dipping zone is usually distributed along the boundary of ancient continental blocks. Its crossing effect with geophysical gradient zone is usually presented as depression or swell of Moho discontinuity on the crossing direction with the ancient continental margin, which would lead to form deep fractures of earth crust at block margins or lead to adjustment of earth crust texture. The deep hydrothermal liquid would rise up along the structural planes to form the convergent areas of mineral deposits. For example, Luonan- Luanchuan area in east Qinling is a typical crossed area of the geochemical steepdipping zone and geophysical gradient zone. The mineral deposit belt extends along EW direction. It was controlled by the geochemical steepdipping zone equidistantly distributed along NE direction like a string of beads controlled by a gravity gradient zone in NE direction and a mantle depression slope. Along a plunging mantle syncline on EW plunging direction, from the east to the west, checkform was distributed which controls synergic crustmantle granoporphyry rocks. Therefore, a convergent mineralization area of Mo, W, Zn and Au giant deposits occurred.
基金This study was co-supported by the State Eighth Five-Year Plan Scientific Project(No.85-901-03-08D)and National Natural Science Foundation of China(No.49473187).
文摘The paper systematically deals with the background of regional isotopic compo-sitions in the lower and middle reaches of the Yangtze River and neighbouring areas. It isshown that the lead isotopic compositions of different geological formations and units are con-trolled by the primary mantle heterogeneity, dynamic process of crust-mantle interchange,abundances of uraninm, thorium and lead of various layers of the earth and timing. Studies onthe background of regional isotopic compositions may offer significant information forgeochemical regionalization, tracing of sources of ore-forming materials, and regionalprognosis of ore deposits.
基金jointly supported by the National Key Research and Development Program of China(2022YFC2905001)the National Natural Science Foundation(42230813)。
文摘The Sinongduo mining region includes two types of mineralizations:the epithermal and the carbonate-hosted PbZn-Ag deposits.Despite being studied for many years,the ore formation process and genesis of the carbonate-hosted Pb-Zn-Ag deposits remain poorly understood.The Pb-Zn-Ag ore bodies occur as veins and are hosted by limestone and dolostone of the Permian Xiala Formation.Three sulfide mineralization substages have been identified at the Sinongduo carbonatehosted deposit.Indium coupled with Cu,Co and Sn was incorporated into sphalerite as substitutions:2Zn^(2+)?Cu^(+)+In^(3+),(3n/2+1)Zn^(2+)?Co^(2+)+n In^(3+)or(2n+1)Zn^(2+)?Co^(2+)+n(Cu^(+)+In^(3+))(n>1)and 4Zn^(2+)?Sn2++2In^(3+).Sphalerite and pyrite in the mineralization stage displayδ^(34)S values in a narrow range of+5.7‰to+11.3‰,which are similar to those of Palaeocene igneous rocks,indicative of a magmatic source of sulfur.We present systematic carbon-hydrogen-oxygen isotope results that further support a magmatic source for the ore-forming fluids that were influenced by meteoric water.Furthermore,the Pb isotope compositions of sulfide minerals in the Sinongduo carbonate-hosted deposit overlap with the values of coeval Linzizong volcanic rocks and are similar to those of Indian Ocean sediments,indicating upper crustal sources of metals.We conclude that the Sinongduo carbonate-hosted Pb-Zn-Ag deposit is a medium-to low-temperature magmatic-hydrothermal deposit related to Linzizong magmatism.
基金financial support for studying at Lakehead University by the CSU Special Scholarship for Study Abroad from Central South Universitysupported by the National Natural Science Foundation of China (Nos. 42030809, 41772349, 41972309, 42072325)the National Key R&D Program of China (No. 2017YFC0601503)
文摘Texture,geochemistry,and in-situ Pb isotope of galena were investigated to probe the origin of anomalous Ag enrichment in the Dayingezhuang Au(-Ag)deposit.Silver enrichment postdates the main Au mineralization and occurs in the south of the Dayingezhuang deposit.It is primarily associated with galena and the exsolution of Ag-rich sulfosalts(e.g.,matildite)in distal vein-ores related to steeply dipping brittle fractures.Silver-rich galena is characterized by the least radiogenic Pb isotope signature(^(206)Pb/^(204)Pb 17.195–17.258 and ^(208)Pb/^(204)Pb 37.706–37.793),possibly indicating a metasomatized lithospheric mantle or modified lower crustal source for Pb and Ag.Both of these mafic and ultramafic source regions have been previously suggested as Au reservoirs for other Jiaodong Au deposits,implying that the metal reservoir has only a weak control on the uneven Ag-enrichment.Since the Ag-enrichment areas are located in the footwalls of both the Dayingezhuang and Zhaoping faults,the enrichment was most likely dominated by local rotational stress during coeval movements of the two faults in a NE–SW compression and NW−SE extension regime.This work highlights the shallow-crust structural deformation responsible for controlling the flow of late ore-forming fluid resulting in local anomalous metal enrichment.
基金supported by theNational Key Research and Development Program(No.2018YFC0603806)the Geological Surveying Project of China Geological Survey(No.DD20190166).
文摘The Baiyun deposit is a large gold deposit at the western end of the Liaoji rift zone in Liaoning Province, which has produced both auriferous quartz-vein type and altered-rock type mineralization. The ore bodies are mainly hosted in schist from the Gaixian Formation of the Liaohe Group. A detailed field geological survey showed that the quartz-vein type gold ore bodies are distributed in the near EW-trending and occur in the extensional tectonic space of schist in the Gaixian Formation, and the altered-rock type gold ore bodies are distributed in the near EW-trending structural belt and occur near in the Gaixian Formation of biotite schist, biotite granulite, marble and the upper footwall of dike. To further elucidate the source of ore-forming fluid and material in the Baiyun gold deposit, the H-O isotopes for quartz, S and Pb isotopes, in-situ trace elements for sulfides from quartz-vein and altered-rock type mineralization were studied. The H-O isotopic δD_(V-SMOW) and δ^(18)O_(H2O) values of the auriferous quartz range were from-88.8‰ to-82.2‰ and-1.95‰ to 4.85‰, respectively, suggests that the ore-forming fluids were mainly magmatic water with minor meteoric water. The distribution ranges of in-situ S isotopic compositions of Au-bearing pyrite in the quartz-vein type and altered-rock type ores were-8.38‰–-10.47‰(with average values of-7.89‰) and 11.38‰– 17.52‰(with average values of 11.55‰), respectively, indicating that the S isotopic compositions of the two ore types were clearly different. The in-situ Pb isotopic ratios changed almost uniformly, which showed that they had the same lead isotopic source. Based on the analysis of S and Pb isotopic compositions, the metallogenic materials in the Baiyun gold deposit were primarily from deep magma, and some wall rock materials may have been mixed in the metallogenic process. Co/Ni diagram shows that most Au-bearing pyrites have magmatic-hydrothermal or sedimentary alteration properties, and Au/As ratios were between 0.001 and 0.828(the average value was 0.07), indicating that the ore-forming fluid in the Baiyun gold deposit may have been deep magma. Combining the geological, trace element, and isotopic data, as well as data from previous studies, we propose that the Baiyun gold deposit is a magmatic-hydrothermal ore deposit.
基金supported by the National Natural Science Foundation of China(Grant Nos.41427804,41421002,41373004)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1281)the MOST Research Foundation from the State Key Laboratory of Continental Dynamics(Grant No.BJ08132-1)
文摘An in-situ microanalysis of Pb isotopic compositions in sulfide minerals is carried out by using femtosecond laser-ablation multi-collector inductively coupled plasma mass spectrometry (fsLA-MC-ICP-MS). High-temperature-activated carbon was used to filter Hg contained in the carrier gas, which reduced the Hg background signal by 48% and also lowered the detection limit of the analysis. Fractionation and mass discrimination effects existing in the ICP-MS analytical processes were corrected using an internal reference T1 in conjunction with an external reference NIST SRM 610. The proposed method was used to an- alyze the Pb isotopic compositions of chalcopyrite, pyrite, and sphalerite from the Dulong Sn-Zn-In polymetallic ore district. The results showed that in this ore district, the sulfide minerals and different grains of the same sulfide mineral show a large variation in Pb content up to 1000-fold. The studied pyrites show relatively higher Pb contents and homogeneous Pb isotopic compositions, whereas the sphalerites have low Pb contents but most variable Pb isotopic compositions. It is suggested that the large variation of Pb isotopic composition may reflect a late hydrothermal superimposition on the primary sulfide formation. In addition, radiogenic Pb accumulated by radioactive decay of trace amounts of U over time in the host minerals may also be one of the causes for the large variation range of Pb content and Pb isotopic composition of those low-Pb sphalerites. Chalcopyrite and sphalerite grains with Pb content greater than 10 ppm presented a consistent Pb isotopic distribution, whereas all the sulfide grains with Pb content greater than 100 ppm had consistent Pb isotopic composition within 2s measurement uncertainties. The in-situ analysis of Pb isotopic composition agreed well with the results obtained by conventional chemical methods within 2s measurement uncertainties, indicating that the data obtained by fsLA-MC-ICP-MS are reliable. Additionally, this study indicates that the Pb isotopic composition could truthfully record the source of ore-forming minerals only for sulfide minerals with high Pb content. On the contrary, the Pb isotopic composition of low-Pb sulfide minerals may be affected by trace amounts of U in the host minerals that may lead to a highly radiogenic Pb isotope ratio. Alternatively, it is also possible that late fluid metasomatic overprinting may alter the Pb isotopic compositions.