Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ ...Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ features. The eutectic Sn-9Zn alloy is among them. This paper investigated the mechanical and electrical properties of Sn-9Zn-x (Ag, Cu, Sb);{x = 0.2, 0.4, and 0.6} lead-free solder alloys. The mechanical properties such as elastic modulus, ultimate tensile strength (UTS), yield strength (YS), and ductility were examined at the strain rates in a range from 4.17 10−3 s−1 to 208.5 10−3 s−1 at room temperature. It is found that increasing the content of the alloying elements and strain rate increases the elastic modulus, ultimate tensile strength, and yield strength while the ductility decreases. The electrical conductivity of the alloys is found to be a little smaller than that of the Sn-9Zn eutectic alloy.展开更多
The tensile properties of Sn-9Zn-xAg-ySb;{(x, y) = (0.2, 0.6), (0.2, 0.8), (0.6, 0.2), (0.8, 0.2)} lead-free solders were investigated. All the test samples were annealed at 150°C for 1 hour. The tests are carrie...The tensile properties of Sn-9Zn-xAg-ySb;{(x, y) = (0.2, 0.6), (0.2, 0.8), (0.6, 0.2), (0.8, 0.2)} lead-free solders were investigated. All the test samples were annealed at 150°C for 1 hour. The tests are carried out at room temperature at the strain rate of 4.17 × 10<sup>-3</sup> s<sup>-1</sup>, 20.85 × 10<sup>-3</sup> s<sup>-1</sup>, and 208.5 × 10<sup>-3</sup> s<sup>-1</sup>. It is seen that the tensile strength increases and the ductility decrease with increasing the strain rate over the investigated range. From the strain rate change test results, the strain sensitivity values are found in the range of 0.0831 to 0.1455 due to the addition of different alloying elements.展开更多
Gas hydrate drilling expeditions in the Pearl River Mouth Basin,South China Sea,have identified concentrated gas hydrates with variable thickness.Moreover,free gas and the coexistence of gas hydrate and free gas have ...Gas hydrate drilling expeditions in the Pearl River Mouth Basin,South China Sea,have identified concentrated gas hydrates with variable thickness.Moreover,free gas and the coexistence of gas hydrate and free gas have been confirmed by logging,coring,and production tests in the foraminifera-rich silty sediments with complex bottom-simulating reflectors(BSRs).The broad-band processing is conducted on conventional three-dimensional(3D)seismic data to improve the image and detection accuracy of gas hydratebearing layers and delineate the saturation and thickness of gas hydrate-and free gas-bearing sediments.Several geophysical attributes extracted along the base of the gas hydrate stability zone are used to demonstrate the variable distribution and the controlling factors for the differential enrichment of gas hydrate.The inverted gas hydrate saturation at the production zone is over 40% with a thickness of 90 m,showing the interbedded distribution with different boundaries between gas hydrate-and free gas-bearing layers.However,the gas hydrate saturation value at the adjacent canyon is 70%,with 30-m-thick patches and linear features.The lithological and fault controls on gas hydrate and free gas distributions are demonstrated by tracing each gas hydrate-bearing layer.Moreover,the BSR depths based on broad-band reprocessed 3D seismic data not only exhibit variations due to small-scale topographic changes caused by seafloor sedimentation and erosion but also show the upward shift of BSR and the blocky distribution of the coexistence of gas hydrate and free gas in the Pearl River Mouth Basin.展开更多
This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depen...This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.展开更多
Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic netw...Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic network on FAA biosynthesis remains unclear.Through metagenomic analysis,this work aimed to elucidate the roles of microbes in FAA biosynthesis during Monascus rice vinegar fermentation.Taxonomic profiles from functional analyses showed 14 dominant genera with high contributions to the metabolism pathways.The metabolic network for FAA biosynthesis was then constructed,and the microbial distribution in different metabolic pathways was illuminated.The results revealed that 5 functional genera were closely involved in FAA biosynthesis.This study illuminated the metabolic roles of microorganisms in FAA biosynthesis and provided crucial insights into the functional attributes of microbiota in vinegar fermentation.展开更多
This paper is devoted to the study of the shape of the free boundary for a threedimensional axisymmetric incompressible impinging jet.To be more precise,we will show that the free boundary is convex to the fluid,provi...This paper is devoted to the study of the shape of the free boundary for a threedimensional axisymmetric incompressible impinging jet.To be more precise,we will show that the free boundary is convex to the fluid,provided that the uneven ground is concave to the fluid.展开更多
In this study,the impacts of egg consumption on mice model of metabolic syndrome(Met S)were comparatively investigated.Mice were divided into five groups(n=8):normal diet group(ND),high-fat diet group(HFD),HFD with wh...In this study,the impacts of egg consumption on mice model of metabolic syndrome(Met S)were comparatively investigated.Mice were divided into five groups(n=8):normal diet group(ND),high-fat diet group(HFD),HFD with whole egg group(WE),HFD with free-yolk egg substitute group(YFES),and HFD with lovastatin group(Lov).Main biochemical indexes and a non-targeted lipidomic analysis were employed to insight the lipid profile changes in serum.It was revealed that WE could significantly improve serum biochemical indexes by reducing body weight,low-density lipoprotein cholesterol(LDL-C)and total cholesterol(TC),while increasing high-density lipoprotein cholesterol.YFES exhibited remarkably better performance in increasing phosphatidylglycerol and phosphatidic acids,while decreasing phosphatidylinositol than WE.A total of 50 differential lipids biomarkers tightly related to glycerophospholipids metabolism were screened out.Carnitine C18:2 and C12:1,SM(d18:0/12:0),and SM(d18:1/14:1)were significantly upregulated in YFES compared to WE.YFES reduced expression of SREBP-1c and Cpt1a,while did not affect the expression of PPAR-α.Sphingomyelin biomarkers were positively related to the TC(|r|>0.6),while PPAR-αwas negatively correlated with triglyceride and LDL-C levels.To sum up,YFES attenuated HFD-induced Met S by improving the serum phospholipids,which account for its modulation of glycerophospholipid metabolism.展开更多
This study explores a symmetric configuration approach in anion exchange membrane(AEM)water electrolysis,focusing on overcoming adaptability challenges in dynamic conditions.Here,a rapid and mild synthesis technique f...This study explores a symmetric configuration approach in anion exchange membrane(AEM)water electrolysis,focusing on overcoming adaptability challenges in dynamic conditions.Here,a rapid and mild synthesis technique for fabricating fibrous membrane-type catalyst electrodes is developed.Our method leverages the contrasting oxidation states between the sulfur-doped NiFe(OH)2 shell and the metallic Ni core,as revealed by electron energy loss spectroscopy.Theoretical evaluations confirm that the S–NiFe(OH)_(2) active sites optimize free energy for alkaline water electrolysis intermediates.This technique bypasses traditional energy-intensive processes,achieving superior bifunctional activity beyond current benchmarks.The symmetric AEM water electrolyzer demonstrates a current density of 2 A cm^(-2) at 1.78 V at 60℃ in 1 M KOH electrolyte and also sustains ampere-scale water electrolysis below 2.0 V for 140 h even in ambient conditions.These results highlight the system's operational flexibility and structural stability,marking a significant advance-ment in AEM water electrolysis technology.展开更多
The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming ag...The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming agents is not well understood.Herein,an effective chemical activation followed by a high-temperature self-healing strategy is employed to generate interconnected closed pores in lignin-derived hard carbon(HCs).By systematic experimental design combined with electron paramagnetic res-onance spectroscopy,it can be found that the content of free radicals in the carbon matrix influences the closure of open pores at high temperatures.Excessively high activation temperature(>700 C)leads to a low free radical concentration,making it difficult to achieve self-healing of open pores at high tempera-tures.By activation at 700°C,a balance between pore making and self-healing is achieved in the final hard carbon.A large number of free radicals triggers rapid growth and aggregation of carbon microcrys-tals,blocking pre-formed open micropores and creating additional interconnected closed pores in as-obtained hard carbons.As a result,the optimized carbon anode(LK-700-1300)delivers a high reversible capacity of 330.8 mA h g^(-1) at 0.03 A g^(-1),which is an increase of 86 mA h g^(-1) compared to the pristine lignin-derived carbon anode(L-700-1300),and exhibits a good rate performance(202.1 mA h g^(-1) at 1 A g^(-1)).This work provides a universal and effective guidance for tuning closed pores of hard carbons from otherprecursors.展开更多
The realization of a stable lithium-metal free(LiMF)sulfur battery based on amorphous carbon anode and lithium sulfide(Li_(2)S)cathode is here reported.In particular,a biomass waste originating full-cell combining a c...The realization of a stable lithium-metal free(LiMF)sulfur battery based on amorphous carbon anode and lithium sulfide(Li_(2)S)cathode is here reported.In particular,a biomass waste originating full-cell combining a carbonized brewer's spent grain(CBSG)biochar anode with a Li_(2)S-graphene composite cathode(Li_(2)S70Gr30)is proposed.This design is particularly attractive for applying a cost-effective,high performance,environment friendly,and safe anode material,as an alternative to standard graphite and metallic lithium in emerging battery technologies.The anodic and cathodic materials are characterized in terms of structure,morphology and composition through X-ray diffraction,scanning and transmission electron microscopy,X-ray photoelectron and Raman spectroscopies.Furthermore,an electrochemical characterization comprising galvanostatic cycling,rate capability and cyclic voltammetry tests were carried out both in half-cell and full-cell configurations.The systematic investigation reveals that unlike graphite,the biochar electrode displays good compatibility with the electrolyte typically employed in sulfur batteries.The CBSG/Li_(2)S70Gr30 full-cell demonstrates an initial charge and discharge capacities of 726 and 537 mAh g^(-1),respectively,at 0.05C with a coulombic efficiency of 74%.Moreover,it discloses a reversible capacity of 330 mAh g^(-1)(0.1 C)after over 300 cycles.Based on these achievements,the CBSG/Li_(2)S70Gr30 battery system can be considered as a promising energy storage solution for electric vehicles(EVs),especially when taking into account its easy scalability to an industrial level.展开更多
Objective Obesity-induced kidney injury contributes to the development of diabetic nephropathy(DN).Here,we identified the functions of ubiquitin-specific peptidase 19(USP19)in HK-2 cells exposed to a combination of hi...Objective Obesity-induced kidney injury contributes to the development of diabetic nephropathy(DN).Here,we identified the functions of ubiquitin-specific peptidase 19(USP19)in HK-2 cells exposed to a combination of high glucose(HG)and free fatty acid(FFA)and determined its association with TGF-beta-activated kinase 1(TAK1).Methods HK-2 cells were exposed to a combination of HG and FFA.USP19 mRNA expression was detected by quantitative RT-PCR(qRT-PCR),and protein analysis was performed by immunoblotting(IB).Cell growth was assessed by Cell Counting Kit-8(CCK-8)viability and 5-ethynyl-2′-deoxyuridine(EdU)proliferation assays.Cell cycle distribution and apoptosis were detected by flow cytometry.The USP19/TAK1 interaction and ubiquitinated TAK1 levels were assayed by coimmunoprecipitation(Co-IP)assays and IB.Results In HG+FFA-challenged HK-2 cells,USP19 was highly expressed.USP19 knockdown attenuated HG+FFA-triggered growth inhibition and apoptosis promotion in HK-2 cells.Moreover,USP19 knockdown alleviated HG+FFA-mediated PTEN-induced putative kinase 1(PINK1)/Parkin pathway inactivation and increased mitochondrial reactive oxygen species(ROS)generation in HK-2 cells.Mechanistically,USP19 stabilized the TAK1 protein through deubiquitination.Importantly,increased TAK1 expression reversed the USP19 knockdown-mediated phenotypic changes and PINK1/Parkin pathway activation in HG+FFA-challenged HK-2 cells.Conclusion The findings revealed that USP19 plays a crucial role in promoting HK-2 cell dysfunction induced by combined stimulation with HG and FFAs by stabilizing TAK1,providing a potential therapeutic strategy for combating DN.展开更多
In this paper, a novel efficient energy absorber with free inversion of a metal foam-filled circular tube(MFFCT) is designed, and the axial compressive behavior of the MFFCT under free inversion is studied analyticall...In this paper, a novel efficient energy absorber with free inversion of a metal foam-filled circular tube(MFFCT) is designed, and the axial compressive behavior of the MFFCT under free inversion is studied analytically and numerically. The theoretical analysis reveals that the energy is mainly dissipated through the radial bending of the metal circular tube, the circumferential expansion of the metal circular tube, and the metal filled-foam compression. The principle of energy conservation is used to derive the theoretical formula for the minimum compressive force of the MFFCT over free inversion under axial loading. Furthermore, the free inversion deformation characteristics of the MFFCT are analyzed numerically. The theoretical steady values are found to be in good agreement with the results of the finite element(FE) analysis. The effects of the average diameter of the metal tube, the wall thickness of the metal tube, and the filled-foam strength on the free inversion deformation of the MFFCT are considered. It is observed that in the steady deformation stage, the load-carrying and energy-absorbing capacities of the MFFCT increase with the increase in the average diameter of the metal tube, the wall thickness of the metal tube, or the filled-foam strength. The specific energy absorption(SEA) of free inversion of the MFFCT is significantly higher than that of the metal tube alone.展开更多
For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geomet...For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.展开更多
The Earth’s Free Core Nutation(FCN) causes Earth tides and forced nutation with frequencies close to the FCN that exhibit resonance effects.High-precision superconducting gravimeter(SG) and very long baseline interfe...The Earth’s Free Core Nutation(FCN) causes Earth tides and forced nutation with frequencies close to the FCN that exhibit resonance effects.High-precision superconducting gravimeter(SG) and very long baseline interferometry(VLBI) provide good observation techniques for detecting the FCN parameters.However,some choices in data processing and solution procedures increase the uncertainty of the FCN parameters.In this study,we analyzed the differences and the effectiveness of weight function and ocean tide corrections in the FCN parameter detection using synthetic data,SG data from thirty-one stations,and the 10 celestial pole offset(CPO) series.The results show that significant discrepancies are caused by different computing options for a single SG station.The stacking method,which results in a variation of0.24-5 sidereal days(SDs) in the FCN period(T) and 10^(3)-10^(4) in the quality factor(Q) due to the selection of the weighting function and the ocean tide model(OTM),can effectively suppress this influence.The statistical analysis results of synthetic data shows that although different weight choices,while adjusting the proportion of diurnal tidal waves involved,do not significantly improve the accuracy of fitted FCN parameters from gravity observations.The study evaluated a series of OTMs using the loading correction efficiency.The fitting of FCN parameters can be improved by selecting the mean of appropriate OTMs based on the evaluation results.Through the estimation of the FCN parameters based on the forced nutation,it was found that the weight function P_(1) is more suitable than others,and different CPO series(after 2009) resulted in a difference of 0.4 SDs in the T and of 103 in the Q.We estimated the FCN parameters for SG(T=430.4±1.5 SDs and Q=1.52×10^(4)±2.5×10^(3)) and for VLBI(T=429.8±0.7 SDs,Q=1.88×10^(4)±2.1×10^(3)).展开更多
Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natura...Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation.展开更多
BACKGROUND Prostate cancer is the second most common cancer among men worldwide,and prostate-specific antigen(PSA)is often used in clinical practice to screen for prostate cancer.Normal total PSA(tPSA)level initially ...BACKGROUND Prostate cancer is the second most common cancer among men worldwide,and prostate-specific antigen(PSA)is often used in clinical practice to screen for prostate cancer.Normal total PSA(tPSA)level initially excludes prostate cancer.Here,we report a case of prostate cancer with elevated free PSA density(fPSAD).CASE SUMMARY A patient diagnosed with benign prostatic hyperplasia underwent prostatectomy,and the postoperative pathological results showed acinar adenocarcinoma of the prostate.The patient is currently undergoing endocrine chemotherapy.CONCLUSION We provide a clinical reference for diagnosis and treatment of patients with normal tPSA but elevated fPSAD.展开更多
It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly eval...It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.展开更多
Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore th...Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM.展开更多
Background,aim,and scope Environmentally persistent free radicals(EPFRs)have received significant attention due to their longer lifetime and stable existence in various environments.The strong environmental migration ...Background,aim,and scope Environmentally persistent free radicals(EPFRs)have received significant attention due to their longer lifetime and stable existence in various environments.The strong environmental migration ability of particulate matter allows EPFRs to migrate over long-distance transport,thereby impacting the quality of the local atmospheric environment.Additionally,EPFRs can also adhere to atmospheric particles and interact with typical gaseous pollutants to affect atmospheric chemical reactions.EPFRs can produce some reactive organic species,promoting oxidative stress in the human body,damaging biological macromolecules and ultimately affecting the organism health.EPFRs are considered as a novel type of pollutant that affects human health.Despite their significance,there are few literatures available on the characteristics and fate behaviors of EPFRs up to date.Therefore,supplemental reviews are crucial for providing comprehensive understanding of EPFRs.Materials and methods This review summarizes the characteristics of EPFRs in particulate matter,outlines the generation mechanism and influencing factors of EPFRs,and the impacts of EPFRs on environmental quality and organism health.Results The content of EPFRs in particulate matter ranges from 1017 to 1020 spins∙g−1.Due to the strong mobility of atmospheric particulate matter,the long-term exposure to high levels of EPFRs may aggravate the impact of particulate matter on human health.The interaction between EPFRs and typical gaseous pollutants can alter their fate and influence atmospheric chemical reactions.EPFRs are mainly produced by transition metal elements and substituted aromatic hydrocarbons through electron transfer.Additionally,the chemical bond rupture of organic substances through heat treatment or ultraviolet radiation can also produce EPFRs,and heterogeneous reactions are capable producing them as well.The production of EPFRs is not only influenced by transition metal elements and precursors,but also by various environmental factors such as oxygen,temperature,light radiation,and relative humidity.Discussion EPFRs in atmospheric particulates matters are usually rich in fine particulates with obvious seasonal and regional variations.They can easily enter the human respiratory tract and lungs with inhalable particulates,thereby increasing the risk of exposure.Additionally,EPFRs in atmospheric particulates can interact with some typical gaseous pollutants,impacting the life and fate of EPFRs in the atmosphere,and alter atmospheric chemical reactions.Traditionally,EPFRs are generated by transition metal elements and substituted aromatic hydrocarbons undergoing electron transfer in the post-flame and cool-zone regions of combustion systems and other thermal processes to remove HCl,H2O or CO groups,ultimately produce semiquinones,phenoxyls,and cyclopentadienyls.Recent studies have indicated that EPFRs can also be generated under the conditions of without transition metal elemental.Organics can also produce EPFRs through chemical bond rupture during heat treatment or light radiation conditions,as well as through some heterogeneous reactions and photochemical secondary generation of EPFRs.The presence or absence of oxygen has different effects on the type and yield of EPFRs.The concentration,type,and crystal type of transition metal elements will affect the type,content,and atmospheric lifetime of EPFRs.It is generally believed that the impact of transition metal element types on EPFRs is related to the oxidation-reduction potential.The combustion temperature or heat treatment process significantly affects the type and amount of EPFRs.Factors such as precursor loading content,pH conditions,light radiation and relative humidity also influence the generation of EPFRs.EPFRs can interact with pollutants in the environment during their migration and transformation process in environmental medium.This process accelerates the degradation of pollutants and plays a crucial role in the migration and transformation of organic pollutants in environmental media.The reaction process of EPFRs may lead to the production of reactive oxygen species(ROS)such as∙OH,which can induce oxidative stress,inflammation and immune response to biological lung cells and tissues,leading to chronic respiratory and cardiopulmonary dysfunction,cardiovascular damage and neurotoxic effects,ultimately impacting the health of organisms.Conclusions The interaction mechanism between EPFRs in particulate matter and gaseous pollutants remains unclear.Furthermore,research on the generation mechanism of EPFRs without the participation of transition metals is not comprehensive,and the detection of EPFRs is limited to simple qualitative categories and lack accurate qualitative analysis.Recommendations and perspectives Further research should be conducted on the generation mechanism,measurement techniques,migration pathways,and transformation process of EPFRs.It is also important to explore the interaction between EPFRs in atmospheric particulate matter and typical gaseous pollutants.展开更多
文摘Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ features. The eutectic Sn-9Zn alloy is among them. This paper investigated the mechanical and electrical properties of Sn-9Zn-x (Ag, Cu, Sb);{x = 0.2, 0.4, and 0.6} lead-free solder alloys. The mechanical properties such as elastic modulus, ultimate tensile strength (UTS), yield strength (YS), and ductility were examined at the strain rates in a range from 4.17 10−3 s−1 to 208.5 10−3 s−1 at room temperature. It is found that increasing the content of the alloying elements and strain rate increases the elastic modulus, ultimate tensile strength, and yield strength while the ductility decreases. The electrical conductivity of the alloys is found to be a little smaller than that of the Sn-9Zn eutectic alloy.
文摘The tensile properties of Sn-9Zn-xAg-ySb;{(x, y) = (0.2, 0.6), (0.2, 0.8), (0.6, 0.2), (0.8, 0.2)} lead-free solders were investigated. All the test samples were annealed at 150°C for 1 hour. The tests are carried out at room temperature at the strain rate of 4.17 × 10<sup>-3</sup> s<sup>-1</sup>, 20.85 × 10<sup>-3</sup> s<sup>-1</sup>, and 208.5 × 10<sup>-3</sup> s<sup>-1</sup>. It is seen that the tensile strength increases and the ductility decrease with increasing the strain rate over the investigated range. From the strain rate change test results, the strain sensitivity values are found in the range of 0.0831 to 0.1455 due to the addition of different alloying elements.
基金supported by the State Key Laboratory of Natural Gas Hydrate(No.2022-KFJJ-SHW)the National Natural Science Foundation of China(No.42376058)+2 种基金the International Science&Technology Cooperation Program of China(No.2023YFE0119900)the Hainan Province Key Research and Development Project(No.ZDYF2024GXJS002)the Research Start-Up Funds of Zhufeng Scholars Program.
文摘Gas hydrate drilling expeditions in the Pearl River Mouth Basin,South China Sea,have identified concentrated gas hydrates with variable thickness.Moreover,free gas and the coexistence of gas hydrate and free gas have been confirmed by logging,coring,and production tests in the foraminifera-rich silty sediments with complex bottom-simulating reflectors(BSRs).The broad-band processing is conducted on conventional three-dimensional(3D)seismic data to improve the image and detection accuracy of gas hydratebearing layers and delineate the saturation and thickness of gas hydrate-and free gas-bearing sediments.Several geophysical attributes extracted along the base of the gas hydrate stability zone are used to demonstrate the variable distribution and the controlling factors for the differential enrichment of gas hydrate.The inverted gas hydrate saturation at the production zone is over 40% with a thickness of 90 m,showing the interbedded distribution with different boundaries between gas hydrate-and free gas-bearing layers.However,the gas hydrate saturation value at the adjacent canyon is 70%,with 30-m-thick patches and linear features.The lithological and fault controls on gas hydrate and free gas distributions are demonstrated by tracing each gas hydrate-bearing layer.Moreover,the BSR depths based on broad-band reprocessed 3D seismic data not only exhibit variations due to small-scale topographic changes caused by seafloor sedimentation and erosion but also show the upward shift of BSR and the blocky distribution of the coexistence of gas hydrate and free gas in the Pearl River Mouth Basin.
基金supported by the Key Project of the NSFC(12131010)the NSFC(11771155,12271032)+1 种基金the NSF of Guangdong Province(2021A1515010249,2021A1515010303)supported by the NSFC(11971179,12371205)。
文摘This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.
基金The authors are grateful for the financial support from National Natural Science Foundation of China(32001728).
文摘Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic network on FAA biosynthesis remains unclear.Through metagenomic analysis,this work aimed to elucidate the roles of microbes in FAA biosynthesis during Monascus rice vinegar fermentation.Taxonomic profiles from functional analyses showed 14 dominant genera with high contributions to the metabolism pathways.The metabolic network for FAA biosynthesis was then constructed,and the microbial distribution in different metabolic pathways was illuminated.The results revealed that 5 functional genera were closely involved in FAA biosynthesis.This study illuminated the metabolic roles of microorganisms in FAA biosynthesis and provided crucial insights into the functional attributes of microbiota in vinegar fermentation.
基金supported in part by the National Natural Science Foundation of China(12101088)the Natural Science Foundation of Sichuan Province(2022NSFSC1858)。
文摘This paper is devoted to the study of the shape of the free boundary for a threedimensional axisymmetric incompressible impinging jet.To be more precise,we will show that the free boundary is convex to the fluid,provided that the uneven ground is concave to the fluid.
基金supported by the Applied Basic Research of Shanxi Province(201901D211381)the Innovation-driven Development Capacity Enhancement Fund of Shanxi Province(SXYBKY2019041)+2 种基金National Key Research and Development Program(2021YFD1600604-03)Shanxi Scholarship Council of China(2021-068)Shanxi Agricultural University High-Level Talent Project(2021XG013)。
文摘In this study,the impacts of egg consumption on mice model of metabolic syndrome(Met S)were comparatively investigated.Mice were divided into five groups(n=8):normal diet group(ND),high-fat diet group(HFD),HFD with whole egg group(WE),HFD with free-yolk egg substitute group(YFES),and HFD with lovastatin group(Lov).Main biochemical indexes and a non-targeted lipidomic analysis were employed to insight the lipid profile changes in serum.It was revealed that WE could significantly improve serum biochemical indexes by reducing body weight,low-density lipoprotein cholesterol(LDL-C)and total cholesterol(TC),while increasing high-density lipoprotein cholesterol.YFES exhibited remarkably better performance in increasing phosphatidylglycerol and phosphatidic acids,while decreasing phosphatidylinositol than WE.A total of 50 differential lipids biomarkers tightly related to glycerophospholipids metabolism were screened out.Carnitine C18:2 and C12:1,SM(d18:0/12:0),and SM(d18:1/14:1)were significantly upregulated in YFES compared to WE.YFES reduced expression of SREBP-1c and Cpt1a,while did not affect the expression of PPAR-α.Sphingomyelin biomarkers were positively related to the TC(|r|>0.6),while PPAR-αwas negatively correlated with triglyceride and LDL-C levels.To sum up,YFES attenuated HFD-induced Met S by improving the serum phospholipids,which account for its modulation of glycerophospholipid metabolism.
基金This research was supported by the“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-002)This work was supported by an NRF grant funded by the Ministry of Science,ICT,and Future Planning(No.NRF-2018R1C1B6005009,NRF-2021R1C1C1012676,and 2009-0082580).
文摘This study explores a symmetric configuration approach in anion exchange membrane(AEM)water electrolysis,focusing on overcoming adaptability challenges in dynamic conditions.Here,a rapid and mild synthesis technique for fabricating fibrous membrane-type catalyst electrodes is developed.Our method leverages the contrasting oxidation states between the sulfur-doped NiFe(OH)2 shell and the metallic Ni core,as revealed by electron energy loss spectroscopy.Theoretical evaluations confirm that the S–NiFe(OH)_(2) active sites optimize free energy for alkaline water electrolysis intermediates.This technique bypasses traditional energy-intensive processes,achieving superior bifunctional activity beyond current benchmarks.The symmetric AEM water electrolyzer demonstrates a current density of 2 A cm^(-2) at 1.78 V at 60℃ in 1 M KOH electrolyte and also sustains ampere-scale water electrolysis below 2.0 V for 140 h even in ambient conditions.These results highlight the system's operational flexibility and structural stability,marking a significant advance-ment in AEM water electrolysis technology.
基金supported by the National Natural Science Foundation of China (22379157,22179139)the Key Research and Development (R&D) Projects of Shanxi Province(202102040201003)+1 种基金the Research Program of Shanxi Province(202203021211203)the ICC CAS (SCJC-XCL-2023-10 and SCJC-XCL-2023-13)
文摘The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming agents is not well understood.Herein,an effective chemical activation followed by a high-temperature self-healing strategy is employed to generate interconnected closed pores in lignin-derived hard carbon(HCs).By systematic experimental design combined with electron paramagnetic res-onance spectroscopy,it can be found that the content of free radicals in the carbon matrix influences the closure of open pores at high temperatures.Excessively high activation temperature(>700 C)leads to a low free radical concentration,making it difficult to achieve self-healing of open pores at high tempera-tures.By activation at 700°C,a balance between pore making and self-healing is achieved in the final hard carbon.A large number of free radicals triggers rapid growth and aggregation of carbon microcrys-tals,blocking pre-formed open micropores and creating additional interconnected closed pores in as-obtained hard carbons.As a result,the optimized carbon anode(LK-700-1300)delivers a high reversible capacity of 330.8 mA h g^(-1) at 0.03 A g^(-1),which is an increase of 86 mA h g^(-1) compared to the pristine lignin-derived carbon anode(L-700-1300),and exhibits a good rate performance(202.1 mA h g^(-1) at 1 A g^(-1)).This work provides a universal and effective guidance for tuning closed pores of hard carbons from otherprecursors.
基金the Natural Science Foundation of China,grant no.32071317
文摘The realization of a stable lithium-metal free(LiMF)sulfur battery based on amorphous carbon anode and lithium sulfide(Li_(2)S)cathode is here reported.In particular,a biomass waste originating full-cell combining a carbonized brewer's spent grain(CBSG)biochar anode with a Li_(2)S-graphene composite cathode(Li_(2)S70Gr30)is proposed.This design is particularly attractive for applying a cost-effective,high performance,environment friendly,and safe anode material,as an alternative to standard graphite and metallic lithium in emerging battery technologies.The anodic and cathodic materials are characterized in terms of structure,morphology and composition through X-ray diffraction,scanning and transmission electron microscopy,X-ray photoelectron and Raman spectroscopies.Furthermore,an electrochemical characterization comprising galvanostatic cycling,rate capability and cyclic voltammetry tests were carried out both in half-cell and full-cell configurations.The systematic investigation reveals that unlike graphite,the biochar electrode displays good compatibility with the electrolyte typically employed in sulfur batteries.The CBSG/Li_(2)S70Gr30 full-cell demonstrates an initial charge and discharge capacities of 726 and 537 mAh g^(-1),respectively,at 0.05C with a coulombic efficiency of 74%.Moreover,it discloses a reversible capacity of 330 mAh g^(-1)(0.1 C)after over 300 cycles.Based on these achievements,the CBSG/Li_(2)S70Gr30 battery system can be considered as a promising energy storage solution for electric vehicles(EVs),especially when taking into account its easy scalability to an industrial level.
基金supported by Natural Science Foundation of Shaanxi Province(No.2023-JC-YB-743 and No.2021JQ-905).
文摘Objective Obesity-induced kidney injury contributes to the development of diabetic nephropathy(DN).Here,we identified the functions of ubiquitin-specific peptidase 19(USP19)in HK-2 cells exposed to a combination of high glucose(HG)and free fatty acid(FFA)and determined its association with TGF-beta-activated kinase 1(TAK1).Methods HK-2 cells were exposed to a combination of HG and FFA.USP19 mRNA expression was detected by quantitative RT-PCR(qRT-PCR),and protein analysis was performed by immunoblotting(IB).Cell growth was assessed by Cell Counting Kit-8(CCK-8)viability and 5-ethynyl-2′-deoxyuridine(EdU)proliferation assays.Cell cycle distribution and apoptosis were detected by flow cytometry.The USP19/TAK1 interaction and ubiquitinated TAK1 levels were assayed by coimmunoprecipitation(Co-IP)assays and IB.Results In HG+FFA-challenged HK-2 cells,USP19 was highly expressed.USP19 knockdown attenuated HG+FFA-triggered growth inhibition and apoptosis promotion in HK-2 cells.Moreover,USP19 knockdown alleviated HG+FFA-mediated PTEN-induced putative kinase 1(PINK1)/Parkin pathway inactivation and increased mitochondrial reactive oxygen species(ROS)generation in HK-2 cells.Mechanistically,USP19 stabilized the TAK1 protein through deubiquitination.Importantly,increased TAK1 expression reversed the USP19 knockdown-mediated phenotypic changes and PINK1/Parkin pathway activation in HG+FFA-challenged HK-2 cells.Conclusion The findings revealed that USP19 plays a crucial role in promoting HK-2 cell dysfunction induced by combined stimulation with HG and FFAs by stabilizing TAK1,providing a potential therapeutic strategy for combating DN.
基金Project supported by the National Natural Science Foundation of China (Nos. 12272290 and11872291)the State Key Laboratory of Automotive Safety and Energy of China (No. KFY2202)。
文摘In this paper, a novel efficient energy absorber with free inversion of a metal foam-filled circular tube(MFFCT) is designed, and the axial compressive behavior of the MFFCT under free inversion is studied analytically and numerically. The theoretical analysis reveals that the energy is mainly dissipated through the radial bending of the metal circular tube, the circumferential expansion of the metal circular tube, and the metal filled-foam compression. The principle of energy conservation is used to derive the theoretical formula for the minimum compressive force of the MFFCT over free inversion under axial loading. Furthermore, the free inversion deformation characteristics of the MFFCT are analyzed numerically. The theoretical steady values are found to be in good agreement with the results of the finite element(FE) analysis. The effects of the average diameter of the metal tube, the wall thickness of the metal tube, and the filled-foam strength on the free inversion deformation of the MFFCT are considered. It is observed that in the steady deformation stage, the load-carrying and energy-absorbing capacities of the MFFCT increase with the increase in the average diameter of the metal tube, the wall thickness of the metal tube, or the filled-foam strength. The specific energy absorption(SEA) of free inversion of the MFFCT is significantly higher than that of the metal tube alone.
文摘For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.
基金supported by the Open Fund of Hubei Luojia Laboratory (No. 220100033)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB41000000)+1 种基金National Natural Science Foundation of China (Grant Nos. 42174108, 41874094, 42192535 and 42242015)the Young Top-notch Talent Cultivation Program of Hubei Province。
文摘The Earth’s Free Core Nutation(FCN) causes Earth tides and forced nutation with frequencies close to the FCN that exhibit resonance effects.High-precision superconducting gravimeter(SG) and very long baseline interferometry(VLBI) provide good observation techniques for detecting the FCN parameters.However,some choices in data processing and solution procedures increase the uncertainty of the FCN parameters.In this study,we analyzed the differences and the effectiveness of weight function and ocean tide corrections in the FCN parameter detection using synthetic data,SG data from thirty-one stations,and the 10 celestial pole offset(CPO) series.The results show that significant discrepancies are caused by different computing options for a single SG station.The stacking method,which results in a variation of0.24-5 sidereal days(SDs) in the FCN period(T) and 10^(3)-10^(4) in the quality factor(Q) due to the selection of the weighting function and the ocean tide model(OTM),can effectively suppress this influence.The statistical analysis results of synthetic data shows that although different weight choices,while adjusting the proportion of diurnal tidal waves involved,do not significantly improve the accuracy of fitted FCN parameters from gravity observations.The study evaluated a series of OTMs using the loading correction efficiency.The fitting of FCN parameters can be improved by selecting the mean of appropriate OTMs based on the evaluation results.Through the estimation of the FCN parameters based on the forced nutation,it was found that the weight function P_(1) is more suitable than others,and different CPO series(after 2009) resulted in a difference of 0.4 SDs in the T and of 103 in the Q.We estimated the FCN parameters for SG(T=430.4±1.5 SDs and Q=1.52×10^(4)±2.5×10^(3)) and for VLBI(T=429.8±0.7 SDs,Q=1.88×10^(4)±2.1×10^(3)).
基金financially supported by the Beijing Natural Science Foundation for Young Scientists(Grant No.8214052)the Talent Fund of Beijing Jiaotong University(Grant No.2021RC226)the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK2115).
文摘Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation.
文摘BACKGROUND Prostate cancer is the second most common cancer among men worldwide,and prostate-specific antigen(PSA)is often used in clinical practice to screen for prostate cancer.Normal total PSA(tPSA)level initially excludes prostate cancer.Here,we report a case of prostate cancer with elevated free PSA density(fPSAD).CASE SUMMARY A patient diagnosed with benign prostatic hyperplasia underwent prostatectomy,and the postoperative pathological results showed acinar adenocarcinoma of the prostate.The patient is currently undergoing endocrine chemotherapy.CONCLUSION We provide a clinical reference for diagnosis and treatment of patients with normal tPSA but elevated fPSAD.
基金supported by the National Natural Science Foundation of China (12072365)the Natural Science Foundation of Hunan Province of China (2020JJ4657)。
文摘It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.
基金the National Natural Science Foundation of China(Nos.12302007,12372006,and 12202109)the Specific Research Project of Guangxi for Research Bases and Talents(No.AD23026051)。
文摘Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM.
文摘Background,aim,and scope Environmentally persistent free radicals(EPFRs)have received significant attention due to their longer lifetime and stable existence in various environments.The strong environmental migration ability of particulate matter allows EPFRs to migrate over long-distance transport,thereby impacting the quality of the local atmospheric environment.Additionally,EPFRs can also adhere to atmospheric particles and interact with typical gaseous pollutants to affect atmospheric chemical reactions.EPFRs can produce some reactive organic species,promoting oxidative stress in the human body,damaging biological macromolecules and ultimately affecting the organism health.EPFRs are considered as a novel type of pollutant that affects human health.Despite their significance,there are few literatures available on the characteristics and fate behaviors of EPFRs up to date.Therefore,supplemental reviews are crucial for providing comprehensive understanding of EPFRs.Materials and methods This review summarizes the characteristics of EPFRs in particulate matter,outlines the generation mechanism and influencing factors of EPFRs,and the impacts of EPFRs on environmental quality and organism health.Results The content of EPFRs in particulate matter ranges from 1017 to 1020 spins∙g−1.Due to the strong mobility of atmospheric particulate matter,the long-term exposure to high levels of EPFRs may aggravate the impact of particulate matter on human health.The interaction between EPFRs and typical gaseous pollutants can alter their fate and influence atmospheric chemical reactions.EPFRs are mainly produced by transition metal elements and substituted aromatic hydrocarbons through electron transfer.Additionally,the chemical bond rupture of organic substances through heat treatment or ultraviolet radiation can also produce EPFRs,and heterogeneous reactions are capable producing them as well.The production of EPFRs is not only influenced by transition metal elements and precursors,but also by various environmental factors such as oxygen,temperature,light radiation,and relative humidity.Discussion EPFRs in atmospheric particulates matters are usually rich in fine particulates with obvious seasonal and regional variations.They can easily enter the human respiratory tract and lungs with inhalable particulates,thereby increasing the risk of exposure.Additionally,EPFRs in atmospheric particulates can interact with some typical gaseous pollutants,impacting the life and fate of EPFRs in the atmosphere,and alter atmospheric chemical reactions.Traditionally,EPFRs are generated by transition metal elements and substituted aromatic hydrocarbons undergoing electron transfer in the post-flame and cool-zone regions of combustion systems and other thermal processes to remove HCl,H2O or CO groups,ultimately produce semiquinones,phenoxyls,and cyclopentadienyls.Recent studies have indicated that EPFRs can also be generated under the conditions of without transition metal elemental.Organics can also produce EPFRs through chemical bond rupture during heat treatment or light radiation conditions,as well as through some heterogeneous reactions and photochemical secondary generation of EPFRs.The presence or absence of oxygen has different effects on the type and yield of EPFRs.The concentration,type,and crystal type of transition metal elements will affect the type,content,and atmospheric lifetime of EPFRs.It is generally believed that the impact of transition metal element types on EPFRs is related to the oxidation-reduction potential.The combustion temperature or heat treatment process significantly affects the type and amount of EPFRs.Factors such as precursor loading content,pH conditions,light radiation and relative humidity also influence the generation of EPFRs.EPFRs can interact with pollutants in the environment during their migration and transformation process in environmental medium.This process accelerates the degradation of pollutants and plays a crucial role in the migration and transformation of organic pollutants in environmental media.The reaction process of EPFRs may lead to the production of reactive oxygen species(ROS)such as∙OH,which can induce oxidative stress,inflammation and immune response to biological lung cells and tissues,leading to chronic respiratory and cardiopulmonary dysfunction,cardiovascular damage and neurotoxic effects,ultimately impacting the health of organisms.Conclusions The interaction mechanism between EPFRs in particulate matter and gaseous pollutants remains unclear.Furthermore,research on the generation mechanism of EPFRs without the participation of transition metals is not comprehensive,and the detection of EPFRs is limited to simple qualitative categories and lack accurate qualitative analysis.Recommendations and perspectives Further research should be conducted on the generation mechanism,measurement techniques,migration pathways,and transformation process of EPFRs.It is also important to explore the interaction between EPFRs in atmospheric particulate matter and typical gaseous pollutants.