期刊文献+
共找到103篇文章
< 1 2 6 >
每页显示 20 50 100
Fabrication and anodic polarization behavior of lead-based porous anodes in zinc electrowinning 被引量:3
1
作者 衷水平 赖延清 +4 位作者 蒋良兴 吕晓军 陈佩如 李劼 刘业翔 《Journal of Central South University of Technology》 EI 2008年第6期757-762,共6页
A new type of lead-based porous anode in zinc electrowinning was prepared by negative pressure infiltration. The anodic polarization potential and corrosion rate were studied and compared with those of traditional fia... A new type of lead-based porous anode in zinc electrowinning was prepared by negative pressure infiltration. The anodic polarization potential and corrosion rate were studied and compared with those of traditional fiat anodes (Pb-0.8%Ag) used in industry. The anode corrosion rate was determined by anode actual current density and microstructure. The results show that the anodic oxygen evolution potential decreases first and then increases with the decrease of pore diameter. The anodic potential decreases to the lowest value of 1.729 V at the pore diameter of 1.25-1.60 mm. The porous anode can decrease its actual current density and thus decrease the anodic corrosion rate. When the pore diameter is 1.60-2.00 mm, the anodic relative corrosion rate reaches the lowest value of 52.1%. 展开更多
关键词 zinc electrowinning negative pressure infiltration porous anode anode potential corrosion rate
下载PDF
Lignite-Based Hierarchical Porous C/SiO_(x)Composites as High-Performance Anode for Potassium-Ion Batteries 被引量:1
2
作者 Zexu Yang Shouwang Zhao +7 位作者 Rongji Jiao Gengyu Hao Yunying Liu Wenxiu He Jingwei Chen Guixiao Jia Jinlong Cui Shaohui Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期107-117,共11页
Silicon oxide(SiO_(x),0<x≤2)has been recognized as a prominent anode material in lithium-ion batteries and sodium-ion batteries due to its high theoretical capacity,suitable electrochemical potential,and earth abu... Silicon oxide(SiO_(x),0<x≤2)has been recognized as a prominent anode material in lithium-ion batteries and sodium-ion batteries due to its high theoretical capacity,suitable electrochemical potential,and earth abundance.However,it is intrinsically poor electronic conductivity and excessive volume expansion during potassiation/depotassiation process hinder its application in potassium-ion batteries.Herein,we reported a hierarchical porous C/SiO_(x)potassium-ion batteries anode using lignite as raw material via a one-step carbonization and activation method.The amorphous C skeleton around SiO_(x)particles can effectively buffer the volume expansion,and improve the ionic/electronic conductivity and structural integrity,achieving outstanding rate capability and cyclability.As expected,the obtained C/SiO_(x)composite delivers a superb specific capacity of 370 mAh g^(-1)at 0.1 A g^(-1)after 100 cycles as well as a highly reversible capacity of 208 mAh g^(-1)after 1200 cycles at 1.0 A g^(-1).Moreover,the potassium ion storage mechanism of C/SiO_(x)electrodes was investigated by ex-situ X-ray diffraction and transmission electron microscopy,revealing the formation of reversible products of K_(6.8)Si_(45.3)and K_(4)SiO_(4),accompanied by generation of irreversible K2O after the first cycle.This work sheds light on designing low-cost Si-based anode materials for high-performance potassium-ion batteries and beyond. 展开更多
关键词 anode hierarchical porous C/SiO_(x) K_(4)SiO_(4) LIGNITE potassium-ion batteries
下载PDF
Synergistic effect of carbon nanotube and encapsulated carbon layer enabling high-performance SnS_2-based anode for lithium storage 被引量:1
3
作者 Chunwei Dong Yongjin Xia +7 位作者 Zhijiang Su Zhihua Han Yang Dong Jingyun Chen Fei Hao Qiyao Yu Qing Jiang Jiaye Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期700-709,I0015,共11页
Tin disulfide(SnS_(2)),due to large interlayer spacing and high theoretical capacity,is regarded as a prospective anode material for lithium-ion batteries.Nevertheless,the poor electron conductivity of SnS_(2) and hug... Tin disulfide(SnS_(2)),due to large interlayer spacing and high theoretical capacity,is regarded as a prospective anode material for lithium-ion batteries.Nevertheless,the poor electron conductivity of SnS_(2) and huge volumetric change during the lithiation/delithiation process lead to a rapid capacity decay of the battery,hindering its commercialization.To address these issues,herein,SnS_(2) is in-situ grown on the surface of carbon nanotubes(CNT)and then encapsulated with a layer of porous amorphous carbon(CNT/SnS_(2)@C)by simple solvothermal and further carbonization treatment.The synergistic effect of CNT and porous carbon layer not only enhances the electrical co nductivity of SnS_(2) but also limits the huge volumetric change to avoid the pulverization and detachment of SnS_(2).Density functional theo ry calculations show that CNT/SnS_(2)@C has high Li^(+)adsorption and lithium storage capacity achieving high reaction kinetics.Consequently,cells with the CNT/SnS_(2)@C anode exhibit a high lithium storage capacity of 837mAh/g after 100 cycles at 0.1 A/g and retaining a capacity of 529.8 mAh/g under 1.0 A/g after 1000 cycles.This study provides a fundamental understanding of the electrochemical processes and beneficial guidance to design high-performance SnS_(2)-based anodes for LIBs. 展开更多
关键词 Lithium-ion batteries porous amorphous carbon Carbon nanotubes SnS_(2)-based anode Density functional theory calculations
下载PDF
Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode 被引量:18
4
作者 Yanxia Yuan Feng Wu +2 位作者 Guanghai Chen Ying Bai Chuan Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第10期197-203,共7页
Lithium metal is supposed to be critical material for constructing next-generation batteries due to extremely high capacity and ultralow redox potential. However, the perplexing issue of lithium dendrite growth impede... Lithium metal is supposed to be critical material for constructing next-generation batteries due to extremely high capacity and ultralow redox potential. However, the perplexing issue of lithium dendrite growth impedes the commercial application. The initial nucleation and low Li ions diffusion rate in the electrolyte/electrode interface dominate the deposition behavior. Therefore, a uniform and flexible interface is urgently needed. Here, a facile method is proposed to prepare a thin and porous LiF-rich layer (TPL) by the in-situ reaction of small amount of ammonium hydrogen difluoride (NH4HF2) and Li metal. The deposition morphology on Li metal anode with LiF layer is significantly flat and homogeneous owning to low lateral diffusion barrier on LiF crystals and the porous structure of TPL film. Additionally, the symmetrical cells made with such TPL Li anodes show significantly stable cycling over 100 cycles at high current density of 6 mA/cm^2. The TPL Li|LiFePO4 full cells keep over 99% capacity retention after 100 cycles at 2.0 C. This approach serves as a facile and controllable way of adjusting the protective layer on Li metal. 展开更多
关键词 LITHIUM metal anode porous LIF LAYER LITHIUM DENDRITE Artificial SEI
下载PDF
Biomass seaweed-derived n itrogen self-doped porous carb on anodes for sodium-ion batteries:Insights into the structure and electrochemical activity 被引量:8
5
作者 Chenrayan Senthil Jae Woo Park +2 位作者 Nitheesha Shaji Gyu Sang Sim Chang Woo Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期286-295,I0008,共11页
Sustainable transformation and efficient utilization of biomasses and their derived materials are environ-mentally as well as economically compliant strategies.Biomass seaweed-derived nitrogen self-doped porous carbon... Sustainable transformation and efficient utilization of biomasses and their derived materials are environ-mentally as well as economically compliant strategies.Biomass seaweed-derived nitrogen self-doped porous carbon with tailored surface area and pore structures are prepared through carb on izatio n and activation.The in fluence of carb on ization temperature on morphology,surface area,and heteroatom dopants are investigated to optimize sodium-ion storage capability.Seaweed-derived nitrogen selfdoped activated carbon(SAC)as anode materials for sodium-ion batteries exhibits remarkable reversible capacity of 303/192 mAh g^(-1) after 100/500 cycles at current densities of 100/200 mA g^(-1) respectively,and a good rate capability.The interconnected and porous conducting nature along with the heteroatom dopant role in creating defective sites and charge stabilization are favorable for ion storage and diffusion and electron transport,indicating the electrodes can offer improved electrochemical performances.In addition,post-mortem analysis of the cycled carbon electrodes through ex-situ tools demonstrates the sodium-ion storage mechanism. 展开更多
关键词 BIOMASS Heteroatom self-doping porous carbon anode Sodium-ion batteries Post-mortem ex-situ analysis
下载PDF
N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries 被引量:9
6
作者 Yanfei Zeng Yudai Huang +7 位作者 Niantao Liu Xingchao Wang Yue Zhang Yong Guo Hong-Hui Wu Huixin Chen Xincun Tang Qiaobao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期727-735,共9页
Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical... Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical conductivity.To mitigate these issues,free-standing N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites(Si/C-ZIF-8/CNFs)are designed and synthesized by electrospinning and carbonization methods,which present greatly enhanced electrochemical properties for lithium-ion battery anodes.This particular structure alleviates the volume variation,promotes the formation of stable solid electrolyte interphase(SEI)film,and improves the electrical conductivity.As a result,the as-obtained free-standing Si/C-ZIF-8/CNFs electrode delivers a high reversible capacity of 945.5 mAh g^(-1) at 0.2 A g^(-1) with a capacity retention of 64% for 150 cycles,and exhibits a reversible capacity of 538.6 mA h g^(-1) at 0.5 A g^(-1) over 500 cycles.Moreover,the full cell composed of a freestanding Si/C-ZIF-8/CNFs anode and commercial LiNi_(1/3)Co_(1/3)Mn_(1/3)O_(2)(NCM)cathode shows a capacity of 63.4 mA h g^(-1) after 100 cycles at 0.2 C,which corresponds to a capacity retention of 60%.This rational design could provide a new path for the development of high-performance Si-based anodes. 展开更多
关键词 Pumpkin-like silicon/carbon composites N-doped porous carbon nanofibers Free-standing anode Lithium-ion batteries
下载PDF
From Jackfruit Rags to Hierarchical Porous N-Doped Carbon: A High-Performance Anode Material for Sodium-Ion Batteries 被引量:5
7
作者 Baisheng Zhao Yichun Ding Zhenhai Wen 《Transactions of Tianjin University》 EI CAS 2019年第5期429-436,共8页
Renewable biomass-derived carbon materials have attracted increasing research attention as promising electrode materials for electrochemical energy storage devices, such as sodium-ion batteries (SIBs), due to their ou... Renewable biomass-derived carbon materials have attracted increasing research attention as promising electrode materials for electrochemical energy storage devices, such as sodium-ion batteries (SIBs), due to their outstanding electrical conductivity, hierarchical porous structure, intrinsic heteroatom doping, and environmental friendliness. Here, we investigate the potential of hierarchical N-doped porous carbon (NPC) derived from jackfruit rags through a facile pyrolysis as an anode material for SIBs. The cycling performance of NPC at 1 A/g for 2000 cycles featured a stable reversible capacity of 122.3 mA h/g with an outstanding capacity retention of 99.1%. These excellent electrochemical properties can be attributed to the unique structure of NPC;it features hierarchical porosity with abundant carbon edge defects and large speci c surface areas. These results illuminate the potential application of jackfruit rags-derived porous carbon in SIBs. 展开更多
关键词 porous CARBON N-DOPED CARBON Sodium-ion battery anode JACKFRUIT rags Energy storage and conversion
下载PDF
Porous nanostructured ZnCo2O4 derived from MOF-74:High-performance anode materials for lithium ion batteries 被引量:6
8
作者 Mengjuan Du Dan He +1 位作者 Yongbing Lou Jinxi Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期673-680,共8页
Nanostructured metal oxides derived from metal organic frameworks have been shown to be promising materials for application in high energy density lithium ion batteries. In this work, porous nanostructured ZnCo2O4and ... Nanostructured metal oxides derived from metal organic frameworks have been shown to be promising materials for application in high energy density lithium ion batteries. In this work, porous nanostructured ZnCo2O4and Co3O4were synthesized by a facile and cost-effective approach via the calcination of MOF-74 precursors and tested as anode materials for lithium ion batteries. Compared with Co3O4, the electrochemical properties of the obtained porous nanostructured ZnCo2O4exhibit higher specific capacity, more excellent cycling stability and better rate capability. It demonstrates a reversible capacity of 1243.2 m Ah/g after 80 cycles at 100 m A/g and an excellent rate performance with high average discharge specific capacities of 1586.8, 994.6, 759.6 and 509.2 m Ah/g at 200, 400, 600 and 800 m A/g, respectively.The satisfactory electrochemical performances suggest that this porous nanostructured ZnCo2O4is potentially promising for application as an efficient anode material for lithium ion batteries. 展开更多
关键词 Metal-organic frameworks porous ZnCo2O4 anodes Lithium ion batteries
下载PDF
Ultrafine nano-scale Cu_(2)Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries 被引量:4
9
作者 Dan Wang Qun Ma +3 位作者 Kang-hui Tian Chan-Qin Duan Zhi-yuan Wang Yan-guo Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第10期1666-1674,共9页
Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for... Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).The alloy exerts excellent cycling durability(the capacity can be maintained at 328.3 mA·h·g^(-1) after 100 cycles for SIBs and 260 mA·h·g^(-1) for PIBs)and rate capability(199 mA·h·g^(-1) at 5 A·g^(-1) for SIBs and 148 mA·h·g^(-1) at 5 A·g^(-1) for PIBs)because of the smooth electron transport path,fast Na/K ion diffusion rate,and restricted volume changes from the synergistic effect of three-dimensional porous carbon networks and the ultrafine bimetallic nanoalloy.This study provides an ingenious design route and a simple preparation method toward exploring a high-property electrode for K-ion and Na-ion batteries,and it also introduces broad application prospects for other electrochemical applications. 展开更多
关键词 copper-antimony alloy anode porous carbon potassium-ion batteries sodium-ion batteries
下载PDF
Bi Nanoparticles Anchored in N-Doped Porous Carbon as Anode of High Energy Density Lithium Ion Battery 被引量:4
10
作者 Yaotang Zhong Bin Li +6 位作者 Shumin Li Shuyuan Xu Zhenghui Pan Qiming Huang Lidan Xing Chunsheng Wang Weishan Li 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期10-23,共14页
A novel bismuth–carbon composite, in which bismuth nanoparticles were anchored in a nitrogen-doped carbon matrix(Bi@NC), is proposed as anode for high volumetric energy density lithium ion batteries(LIBs).Bi@NC compo... A novel bismuth–carbon composite, in which bismuth nanoparticles were anchored in a nitrogen-doped carbon matrix(Bi@NC), is proposed as anode for high volumetric energy density lithium ion batteries(LIBs).Bi@NC composite was synthesized via carbonization of Zn-containing zeolitic imidazolate(ZIF-8) and replacement of Zn with Bi, resulting in the N-doped carbon that was hierarchically porous and anchored with Bi nanoparticles. The matrix provides a highly electronic conductive network that facilitates the lithiation/delithiation of Bi.Additionally, it restrains aggregation of Bi nanoparticles and serves as a buffer layer to alleviate the mechanical strain of Bi nanoparticles upon Li insertion/extraction.With these contributions, Bi@NC exhibits excellent cycling stability and rate capacity compared to bare Bi nanoparticles or their simple composites with carbon. This study provides a new approach for fabricating high volumetric energy density LIBs. 展开更多
关键词 porous N-doped carbon Bi nanoparticles anode Lithium-ion battery High energy density
下载PDF
Performance of anaerobic fluidized bed microbial fuel cell with different porous anodes 被引量:2
11
作者 Xiuli Zhang Chunhu Li +1 位作者 Qingjie Guo Kelei Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第3期846-853,共8页
Anode materials were used to construct microbial fuel cells(MFCs),and the characteristics of the anodes were important for successful applied performance of the MFCs.Via the cyclic voltammetry(CV)method,the experiment... Anode materials were used to construct microbial fuel cells(MFCs),and the characteristics of the anodes were important for successful applied performance of the MFCs.Via the cyclic voltammetry(CV)method,the experiments showed that 5 wt%multiwalled carbon nanotubes(MWNTs)were optimal for the PANI/MWNT film anodes prepared using 24 polymerization cycles.The maximum output voltage of the PANI/MWNT film anodes reached 967.7 mV with a power density of 286.63 mW·m-2.Stable output voltages of 860 mV,850 mV,and870 mV were achieved when the anaerobic fluidized bed microbial fuel cell(AFBMFC)anodes consisted of carbon cloth with carbon black on one side,copper foam and carbon brushes,respectively.Pretreatment of the anodes before starting the AFBMFC by immersion in a stirred bacterial fluid significantly shortened the AFBMFC startup time.After the AFBMFC was continuously run,the anode surfaces generated active microbial catalytic material. 展开更多
关键词 Circulating fluidized bed Multiphase flow porous anodes anode modification ELECTROCHEMISTRY
下载PDF
Ge nanoparticles uniformly immobilized on 3D interconnected porous graphene frameworks as anodes for high-performance lithium-ion batteries 被引量:3
12
作者 Yao Chen Yuming Zou +8 位作者 Xiaoping Shen Jingxia Qiu Jiabiao Lian Jinrui Pu Sheng Li Fei-Hu Du Shang-Qi Li Zhenyuan Ji Aihua Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期161-173,I0005,共14页
Germanium(Ge), an alloy-type anode material for lithium-ion batteries(LIBs), possesses many advantages such as high theoretical capacity and decent electrical conductivity. Nevertheless, its application is restricted ... Germanium(Ge), an alloy-type anode material for lithium-ion batteries(LIBs), possesses many advantages such as high theoretical capacity and decent electrical conductivity. Nevertheless, its application is restricted by tremendous volume variation and tardy reaction kinetic during discharge/charge process.In this paper, the Ge/3DPG composites with Ge nanoparticles uniformly dispersed in 3D interconnected porous graphene(3DPG) skeleton are successfully prepared using a template-assisted in-situ reduction method. The unique 3D interconnected porous graphene can not only enhance the electronic conductivity and reaction kinetics of the materials, but also provide sufficient buffer space to effectively mitigate the volume expansion during cycling and strengthen the structural integrity. Moreover, the small-sized Ge nanoparticles in close conjunction with the 3D graphene can boost the surface-controlled reaction of the electrode, which contributes to a fast charge–discharge rate capability. The Ge/3DPG composite with optimized Ge/graphene mass ratio delivers high reversible specific capacity(1102 mAh g^(-1) after 100 cycles at 0.2 C), outstanding rate capability(494 mAh g^(-1) at 5 C), and admirable cycling stability(85.3% of capacity retention after 250 cycles at 0.5 C). This work provides a significant inspiration for the design and fabrication of advanced Ge-based anode materials for next-generation highperformance LIBs. 展开更多
关键词 Germanium nanoparticles 3D porous graphene Composites anode materials Lithium storage performance
下载PDF
Porous core–shell CoMn_2O_4 microspheres as anode of lithium ion battery with excellent performances and their conversion reaction mechanism investigated by XAFS 被引量:2
13
作者 Hang Su Yue-Feng Xu +4 位作者 Shou-Yu Shen Jian-Oiang wang Jun-Tao Li Ling Huang Shi-Gang Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1637-1643,共7页
Porous core-shell CoMn204 microspheres of ca. 3-5μm in diameter were synthesized and served as an-ode of lithium ion battery. Results demonstrate that the as-synthesized CoMn204 materials exhibit excel-lent electroch... Porous core-shell CoMn204 microspheres of ca. 3-5μm in diameter were synthesized and served as an-ode of lithium ion battery. Results demonstrate that the as-synthesized CoMn204 materials exhibit excel-lent electrochemical properties. The CoMn204 anode can deliver a large capacity of 1070 mAh g-1 in thefirst discharge, a reversible capacity of 500 mAh g^-1 after 100 cycles with a coulombic efficiency of 98.5% at a charge-discharge current density of 200 mA g^-l, and a specific capacity of 385 mAh g^-1 at a muchhigher charge-discharge current density of 1600mA g^-1. Synchrotron X-ray absorption fine structure(XAFS) techniques were applied to investigate the conversion reaction mechanism of the CoMn204 anode.The X-ray absorption near edge structure (XANES) spectra revealed that, in the first discharge-charge cy-cle, Co and Mn in CoMn204 were reduced to metallic Co and Mn when the electrode was discharged to0.01 V, while they were oxidized respectively to CoO and MnO when the electrode was charged to 3.0V.Experiments of both XANE5 and extended X-ray absorption fine structure (EXAFS) revealed that neithervalence evolution nor phase transition of the porous core-shell CoMn204 microspheres could happen inthe discharge plateau from 0.8 to 0.6V, which demonstrates the formation of solid electrolyte interface(SEI) on the anode. 展开更多
关键词 Lithium ion battery porous core-shell CoMn2O4 anode Conversion reaction mechanism XAFS
下载PDF
Fabrication and photodegradation properties of TiO_2 nanotubes on porous Ti by anodization 被引量:8
14
作者 曹国剑 崔博 +3 位作者 王文奇 唐光泽 冯义成 王丽萍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2581-2587,共7页
Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whe... Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whereas TiO2 nanotubes can be formed on porous Ti only in the second process. The overhigh current density led to the failure of the formation nanotubes on porous Ti in 0.5%HF electrolyte. TiO2 nanotubes were characterized by SEM and XRD. TiO2 nanotubes on porous Ti were thinner than those on Ti foil. Anatase was formed when TiO2 nanotubes were annealed at 400 °C and fully turned into rutile at 700 °C. To obtain good photodegradation, the optimal heat treatment temperature of TiO2 nanotubes was 450 °C. The porosity of the substrates influenced photodegradation properties. TiO2 nanotubes on porous Ti with 60% porosity had the best photodegradation. 展开更多
关键词 TiO_2 nanotubes anodization PHOTODEGRADATION porous Ti
下载PDF
Recent advances in graphene based materials as anode materials in sodium-ion batteries 被引量:11
15
作者 Kimal Chandula Wasalathilake Henan Li +1 位作者 Li Xu Cheng Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期91-107,共17页
Sodium-ion batteries(SIBs)have emerged as a promising alternative to Lithium-ion batteries(LIBs)for energy storage applications,due to abundant sodium resources,low cost,and similar electrochemical performance.However... Sodium-ion batteries(SIBs)have emerged as a promising alternative to Lithium-ion batteries(LIBs)for energy storage applications,due to abundant sodium resources,low cost,and similar electrochemical performance.However,the large radius of Na+and high molar mass compared to Li^+,result in large volume strain during charge/discharge and low reversible capacity and poor cycling stability.Due to exceptional physical and chemical properties,graphene has attracted increasing attention as a potential anode material for SIBs.When integrated with other nanomaterials in electrodes,graphene can improve the electrical conductivity,accommodate the large volume change and enhance reaction kinetics.This paper provides a systematic review of recent progress in the application of graphene based anodes for SIBs,with a focus on preparation,structural configuration,Na+storage mechanism and electrochemical performance.Additionally,some challenges and future perspectives are provided to improve the sodium storage performance of graphene based electrodes. 展开更多
关键词 Sodium-ion batteries GRAPHENE anode porous GRAPHENE HETEROATOM doped-graphene GRAPHENE nanocomposites
下载PDF
Photocatalytic activity of porous TiO_2 films prepared by anodic oxidation 被引量:8
16
作者 WANG Wei TAO Jie WANG Tao WANG Ling 《Rare Metals》 SCIE EI CAS CSCD 2007年第2期136-141,共6页
Anatase titanium dioxide is an active photocatalyst, however, it is difficult to be immobilized on the substrate. The crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidat... Anatase titanium dioxide is an active photocatalyst, however, it is difficult to be immobilized on the substrate. The crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation. The film was then used for photocatalysis via the methyl orange degradation method. The effects of anodization voltage, pH value, TiO2 film area and degradation time on the photocatalyst were investigated respectively by UV-visible spectrum. It was indicated that the TiO2 film prepared by anodic oxidation at 140 V had the best photocatalysis capability and the degradation of methyl orange was accelerated with acid addition. 展开更多
关键词 TITANIUM porous films anodic oxidation PHOTOCATALYSIS methyl orange
下载PDF
Morphology and growth of porous anodic oxide films on Ti-10V-2Fe-3Al in neutral tartrate solution 被引量:5
17
作者 易俊兰 刘建华 +3 位作者 李松梅 于美 吴国龙 吴量 《Journal of Central South University》 SCIE EI CAS 2011年第1期6-15,共10页
Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning el... Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning electron microscopy(FE-SEM) were used to investigate the morphology evolution of the anodic oxide film.It is shown that above the breakdown voltage,oxygen is generated with the occurrence of drums morphology.These drums grow and extrude,which yields the compression stress.Subsequently,microcracks are generated.With continuous anodizing,porous oxides form at the microcracks.Those oxides grow and connect to each other,finally replace the microcrack morphology.The depth profile of the anodic oxide film formed at 1 800 s was examined by Auger electron spectroscopy(AES).It is found that the film is divided into three layers according to the molar fractions of elements.The outer layer is incorporated by carbon,which may come from electrolyte solution.The thickness of the outer layer is approximately 0.2-0.3 μm.The molar fractions of elements in the intermediate layer are extraordinarily stable,while those in the inner layer vary significantly with sputtering depth.The thicknesses of the intermediate layer and the inner layer are 2 μm and 1.0-1.5 μm,respectively.Moreover,the growth mechanism of porous anodic oxide films in neutral tartrate solution was proposed. 展开更多
关键词 titanium alloy porous anodic oxide films morphology evolution growth mechanism
下载PDF
Designer uniform Li plating/stripping through lithium–cobalt alloying hierarchical scaffolds for scalable high-performance lithium-metal anodes 被引量:5
18
作者 Xinhua Liu Xiaojuan Qian +13 位作者 Weiqiang Tang Hui Luo Yan Zhao Rui Tan Mo Qiao Xinlei Gao Yang Hua Huizhi Wang Shuangliang Zhao Chao Lai Magda Titirici Nigel PBrandon Shichun Yang Billy Wub 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期385-392,I0013,共9页
Lithium metal anodes are of great interest for advanced high-energy density batteries such as lithiumair, lithium-sulfur and solid-state batteries, due to their low electrode potential and ultra-high theoretical capac... Lithium metal anodes are of great interest for advanced high-energy density batteries such as lithiumair, lithium-sulfur and solid-state batteries, due to their low electrode potential and ultra-high theoretical capacity. There are, however, several challenges limiting their practical applications, which include low coulombic efficiency, the uncontrollable growth of dendrites and poor rate capability. Here, a rational design of 3D structured lithium metal anodes comprising of in-situ growth of cobalt-decorated nitrogen-doped carbon nanotubes on continuous carbon nanofibers is demonstrated via electrospinning.The porous and free-standing scaffold can enhance the tolerance to stresses resulting from the intrinsic volume change during Li plating/stripping, delivering a significant boost in both charge/discharge rates and stable cycling performance. A binary Co-Li alloying phase was generated at the initial discharge process, creating more active sites for the Li nucleation and uniform deposition. Characterization and density functional theory calculations show that the conductive and uniformly distributed cobalt-decorated carbon nanotubes with hierarchical structure can effectively reduce the local current density and more easily absorb Li atoms, leading to more uniform Li nucleation during plating. The current work presents an advance on scalable and cost-effective strategies for novel electrode materials with 3D hierarchical microstructures and mechanical flexibility for lithium metal anodes. 展开更多
关键词 Li metal anode Mixed conductor interface 3D porous host Dendrite free Metal-carbon nanofibers
下载PDF
Preparation of Porous Alumina Film on Aluminum Substrate by Anodization in Oxalic Acid 被引量:3
19
作者 KunHOU XiangBinZHANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2002年第7期689-692,共4页
Self-ordering of the cell arrangement of the anodic porous alumina was prepared in oxalic acid solution at a constant potential of 40V and at a temperature of 20C. The honeycomb structure made by one step anodization... Self-ordering of the cell arrangement of the anodic porous alumina was prepared in oxalic acid solution at a constant potential of 40V and at a temperature of 20C. The honeycomb structure made by one step anodization method and two step anodization method is different. Pores in the alumina film prepared by two step anodization method were more ordered than those by one step anodization method. 展开更多
关键词 porous alumina film anodization oxalic acid.
下载PDF
Integrated carbon nanospheres arrays as anode materials for boosted sodium ion storage 被引量:3
20
作者 Wangjia Tang Jianbo Wu +2 位作者 Xiuli Wang Xinhui Xia Jiangping Tu 《Green Energy & Environment》 SCIE 2018年第1期50-55,共6页
Developing cost-effective advanced carbon anode is critical for innovation of sodium ion batteries. Herein, we develop a powerful combined method for rational synthesis of free-standing binder-free carbon nanospheres ... Developing cost-effective advanced carbon anode is critical for innovation of sodium ion batteries. Herein, we develop a powerful combined method for rational synthesis of free-standing binder-free carbon nanospheres arrays via chemical bath plus hydrothermal process. Impressively,carbon spheres with diameters of 150-250 nm are randomly interconnected with each other forming highly porous arrays. Positive advantages including large porosity, high surface and strong mechanical stability are combined in the carbon nanospheres arrays. The obtained carbon nanospheres arrays are tested as anode material for sodium ion batteries(SIBs) and deliver a high reversible capacity of 102 mAh g^(-1) and keep a capacity retention of 95% after 100 cycles at a current density of 0.25 A g^(-1) and good rate performance(65 mAh g^(-1) at a high current density of 2 A g^(-1)). The good electrochemical performance is attributed to the stable porous nanosphere structure with fast ion/electron transfer characteristics. 展开更多
关键词 Carbon nanospheres anode Sodium ion batteries ARRAYS porous film
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部