Yellow light-emitting diodes(LEDs) as soft light have attracted abundant attention in lithography room, museum and art gallery. However, the development of efficient yellow LEDs lags behind green and blue LEDs, and th...Yellow light-emitting diodes(LEDs) as soft light have attracted abundant attention in lithography room, museum and art gallery. However, the development of efficient yellow LEDs lags behind green and blue LEDs, and the available perovskites yellow LEDs suffer from the instability. Herein, a pressure-assisted cooling method is proposed to grow lead-free CsCu2I3single crystals, which possess uniform surface morphology and enhanced photoluminescence quantum yield(PLQY) stability, with only 10% PLQY losses after being stored in air after 5000 h.Then, the single crystals used for yellow LEDs without encapsulation exhibit a decent Correlated Color Temperature(CCT) of 4290 K, a Commission Internationale de l’Eclairage(CIE) coordinate of(0.38, 0.41), and an excellent 570-h operating stability under heating temperature of 100°C. Finally, the yellow LEDs facilitate the application in wireless visible light communication(VLC), which show a-3 dB bandwidth of 21.5 MHz and a high achievable data rate of 219.2 Mbps by using orthogonal frequency division multiplexing(OFDM) modulation with adaptive bit loading. The present work not only promotes the development of lead-free single crystals, but also inspires the potential of CsCu2I3in the field of yellow illumination and wireless VLC.展开更多
The influence of temperature on mode coupling effect in piezoelectric vibrators remains unclear.In this work,we discuss the influence of temperature on two-dimensional(2D)mode coupling effect and electromechanical cou...The influence of temperature on mode coupling effect in piezoelectric vibrators remains unclear.In this work,we discuss the influence of temperature on two-dimensional(2D)mode coupling effect and electromechanical coupling coefficient of cylindrical[001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT piezoelectric single-crystal vibrator with an arbitrary configuration ratio.The electromechanical coupling coefficient kt decreases with temperature increasing,whereas k33 is largely invariant in a temperature range of 25℃-55℃.With the increase of temperature,the shift in the‘mode dividing point’increases the scale of the poling direction of the piezoelectric vibrator.The temperature has little effect on coupling constantΓ.At a given temperature,the coupling constantΓof the cylindrical vibrator is slightly greater than that of the rectangular vibrator.When the temperature changes,the applicability index(M)values of the two piezoelectric vibrators are close to 1,indicating that the coupling theory can be applied to piezoelectric vibrators made of late-model piezoelectric single crystals.展开更多
Piezoelectric friction-inertial motor is known for its promise for a long-range and high-resolution motion.The movement of the slider/rotor of the motor is achieved by stick-slip effect.We report a relaxor-based-ferro...Piezoelectric friction-inertial motor is known for its promise for a long-range and high-resolution motion.The movement of the slider/rotor of the motor is achieved by stick-slip effect.We report a relaxor-based-ferroelectric-single-crystal cymbal actuator and a miniature piezoelectric friction-inertial linear motor(abbreviated as PFILM)fabricated with the cymbal actuator.The cymbal actuator is fabricated with a 10 mm diameter disk of 0.70Pb(Mg_(1/3)Nb_(2/3))O_3-0.30PbTiO_3 single crystal.The displacement of the cymbal actuator increases almost proportionally from 0to 23μm with driving voltage up to 500 V,and the minimal hysteresis is observed.The cymbalPFILM with 20 mm motion range works under driving voltage frequency of ca.100 Hz to ca.5kHz,the fastest speed is obtained with 3.5kHz and the no-load speed is 14mm/s and the maximum thrust force is 98 mN.Compared with a PFILM based on multilayer piezoelectric ceramic,the proposed motor has a larger stroke under DC/quasistatic input voltage in fine motion mode,but a smaller driving force in long-travel mode due to lower resonance frequency.展开更多
From the sound velocity measured using the Brillouin scattering technique, the elastic, piezoelectric, and dielectric constants of a high-quality monodomain tetragonal Rh:BaTiO3 single crystal are determined at room ...From the sound velocity measured using the Brillouin scattering technique, the elastic, piezoelectric, and dielectric constants of a high-quality monodomain tetragonal Rh:BaTiO3 single crystal are determined at room temperature. The elastic constants are in fairly good agreement with those of the BaTiO3 single crystal, measured previously by Brillouin scattering and the low-frequency equivalent circuit methods. However, their electromeehanical properties are significantly different. Based on the sound propagation equations and these results, the directional dependence of the compressional modulus and the shear modulus of Rh:BaTiO3 in the (010) plane is investigated. Some properties of sound propagation and electromechanical coupling in the crystal are discussed.展开更多
Lead-free piezoelectric (K0.5sNa0.5)1-xLixNbO3 (x = 0at%-20at%) ceramics were synthesized by spark plasma sintering (SPS) at low temperature and the effects of LiNbO3 addition on its crystal structure and proper...Lead-free piezoelectric (K0.5sNa0.5)1-xLixNbO3 (x = 0at%-20at%) ceramics were synthesized by spark plasma sintering (SPS) at low temperature and the effects of LiNbO3 addition on its crystal structure and properties were also studied. When the Li content was less than 6at%, a single proveskite phase with the similar structure of (K0.5Na0.5)NbO3 was formed; and a secondary phase with K3Li2Nb5O15 structure was observed in the 6at% 〈 x 〈 20at% compositional range. Furthermore, LiNbO3 existed as the third phase when the Li content was higher than 8at%. The grain sizes increased from 200-500 nm to 5-8 μm when the K3Li2Nb5O15 and LiNbO3 like phases were formed. With increasing Li content, the relative density of the ceramics first decreased from 97% to 93% and then kept constant. The piezoelectric coefficient d33, dielectric constant, and planner electromechanical coupling factor exhibited a decreasing tendency with increasing Li content because of the decrease in density and the formation of the secondary phase such as K3Li2Nb5O15 and LiNbO3. The formation of dense microstructure with a single phase is necessary in improving the properties of the (K0.5Na0.5)1-xLixNbO3 ceramics.展开更多
The crystal intrinsic orientation effect on the piezoelectric response of multi-domain 0.26Pb(Inl/2Nbm)O3-0.46Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PIN-PMN-0.28PT) crystals was investigated by coordinate transformation m...The crystal intrinsic orientation effect on the piezoelectric response of multi-domain 0.26Pb(Inl/2Nbm)O3-0.46Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PIN-PMN-0.28PT) crystals was investigated by coordinate transformation method. The results indicate that crystal intrinsic orientation effect plays a crucial role in determining the piezoelectric properties of multi-domain crystals. Almost 58% and 69% of the transverse piezoelectric coefficients d31 and d32, respectively, and 67% longitudinal piezoelectric coefficient d33 of multi- domain PIN-PMN-0.28PT crystals poled along [011 ]c originate from crystal intrinsic orientation effect. For [001 ]c poled multi-domain PIN-PMN-0.28PT crystals, intrinsic orientation effect contributes to the transverse and longitudinal piezoelectric coefficient at least 79% and 74%, respectively.展开更多
To further enhance the property of piezoelectric materials is of great significance to improve the overall performance of electro-mechanical devices.Here in this work,we propose a thermal annealing and high temperatur...To further enhance the property of piezoelectric materials is of great significance to improve the overall performance of electro-mechanical devices.Here in this work,we propose a thermal annealing and high temperature poling approach to achieve significantly enhanced piezoelectricity in Pb(In_(1/2)Nb_(1/2))O_(3)single bondPb(Mg_(1/3)Nb_(2/3))O_(3)single bondPbTiO_(3)(PIN-PMN-PT)crystals with a morphotropic phase boundary(MPB)composition.The main idea of our approach is to realize a more sufficiently polarized crystal via active manipulation of defects and orientation of defect polarization.Manipulation of defect dipoles by the high temperature poling is proved by the piezo-response force microscopy.Finally,a d_(33)of 3300 pC/N and a SE of 0.25%are obtained,nearly 60%higher than that of conventionally poled crystals.Moreover,such a boosting of piezoelectric property is obtained under a maintained Curie temperature.Our research not only reveals the active control of defect dipole via modified poling method in the PIN-PMN-PT crystal,but also provides a feasible strategy to further improve the property of piezoelectric materials.展开更多
Relaxor ferroelectric single crystals PMNT with the size of φ40 mm×80 mm have been grown by a modified Bridgman method and their ferroelectric and piezoelectric properties have been characterized. The properties...Relaxor ferroelectric single crystals PMNT with the size of φ40 mm×80 mm have been grown by a modified Bridgman method and their ferroelectric and piezoelectric properties have been characterized. The properties varied with the compositions and cut types. On the (001) cut, PMNT76/24 single crystals exhibited a dielectric constant ε of about 3 400, a dielectric loss of tanδ 【0.7%, a piezoelectric constant d33 of 980 pC/N, an electromechanical coupling factor kt of 0.55 and Tc of about 110℃. whereas the properties of PMNT67/33 single crystals on (001) cut were betler: e of about 5 300, tan5 【0.6%, d33 up to 3 000 pC/N, kt 0.64, K33 0.93 and Tc of about 150℃. The piezoelectric properties on other cuts such as (110) and (111) were much lower than those on the (001) cut. The rhombohedral PMNT crystals grown by this method showed more excellent piezoelectric properties than those grown by high temperature solution method and higher value of kt than the rhombohedral PZNT single crystals. it has also展开更多
The dispersion behavior of the shear horizontal (SH) waves in the coupled structure consisting of a piezomagnetic substrate and an orthorhombic piezoelectric layer is investigated with different cut orientations. Th...The dispersion behavior of the shear horizontal (SH) waves in the coupled structure consisting of a piezomagnetic substrate and an orthorhombic piezoelectric layer is investigated with different cut orientations. The surface of the piezoelectric layer is mechanically free, electrically shorted, or open, while the surface of the piezomagnetic substrate is mechanically free, magnetically open, or shorted. The dispersion relations are derived for four electromagnetic boundary conditions. The dispersion characteristics are graphically illustrated for the layered structure with the PMN-PT layer perfectly bonded on the CoFe2O4 substrate. The effects of the PMN-PT cut orientations, the electromagnetic boundary conditions, and the thickness ratio of the layer to the substrate on the dispersion behavior are analyzed and discussed in detail. The results show that, (i) the effect of the cut orientation on the dispersion curves is very obvious, (ii) the electrical boundary conditions of the PMN-PT layer dominate the propagation feature of the SH waves, and (iii) the thickness ratio has a significant effect on the phase velocity when the wave number is small. The results of the present paper can provide valuable theoretical references to the applications of piezoelectric/piezomagnectic structure in acoustic wave devices.展开更多
Single crystals of x(Bi,K)TiO_(3)-(1-x)(Bi,Na)TiO_(3)(0.11≤x≤0.47) were grown by a flux method and their polarization and piezoelectric properties were investigated along h100i cubic at 25℃.Rietveld analysis of pow...Single crystals of x(Bi,K)TiO_(3)-(1-x)(Bi,Na)TiO_(3)(0.11≤x≤0.47) were grown by a flux method and their polarization and piezoelectric properties were investigated along h100i cubic at 25℃.Rietveld analysis of powder X-ray diffraction data provides a tentative phase diagram in this system.rhombohedral R3c for x≤0.22,pseudocubic for 0.22<x<0.3 and tetragonal P4mm for 0.3≤x.Piezoelectric strain properties show that the crystals(x=0.38)exhibited an extremely large piezoelectric strain constant of 637 pm/V.展开更多
The dielectric and pyroelectric performances of 91.5Na_(0.5)Bi_(0.5)TiO_(3)-8.5K_(0.5)Bi_(0.5)TiO_(3)lead-free single crystal were investigated.The depolarization temperature of the crystal is about 153°C.Among t...The dielectric and pyroelectric performances of 91.5Na_(0.5)Bi_(0.5)TiO_(3)-8.5K_(0.5)Bi_(0.5)TiO_(3)lead-free single crystal were investigated.The depolarization temperature of the crystal is about 153°C.Among the<001>,<110>,and<111>crystallographic orientations,the<111>-oriented crystal possesses the highest pyroelectric coefficient and the largest figures of merit,and the values of p,Fv,and Fd are 5.63×10^(−4)C/m^(2)·K,0.06 m^(2)/C,and 21.5μPa−1/2 for the<111>-oriented crystal at room temperature.The Fd and Fv exhibit weak frequency dependence in the range of 100-300 Hz.With the increase of the temperature,the value of p increases,while the value of Fv decreases from 18°C to 103°C.展开更多
Ba_(0.77)Ca_(0.23)TiO_(3)(BCT)single crystal has been widely studied as a promising lead-free ferroelectric material.In this work,high-quality BCT crystal was successfully grown by the Czochralski(CZ)method.The as-gro...Ba_(0.77)Ca_(0.23)TiO_(3)(BCT)single crystal has been widely studied as a promising lead-free ferroelectric material.In this work,high-quality BCT crystal was successfully grown by the Czochralski(CZ)method.The as-grown crystal is crack-free and shows black coloration.It possesses a high dielectric stability over a wide temperature range,while the dielectric loss is rather small below 90℃.Furthermore,it possesses excellent ferroelectric properties with residual polarization strength(Pr)and coercive field(Ec)of 17.93μC/cm^(2) and 8.47 kV/cm,respectively.Besides,BCT crystal shows large electromechanical coupling factors,with kt,k31,k33 and k15 of 0.535,0.254,0.714 and 0.721,respectively.The piezoelectric coefficients d31,d33 and d15 are measured to be−36.5,130 and 246 pC/N,respectively.展开更多
There are a large number of research publications on the hot topic of environmental friendly leadfree piezoelectric materials worldwide in the last decade.The number of researchers and institutions involved from China...There are a large number of research publications on the hot topic of environmental friendly leadfree piezoelectric materials worldwide in the last decade.The number of researchers and institutions involved from China is much larger than other countries or regions.The publications by Chinese researchers cover a broad spectrum on the preparations,structures,properties and applications of lead-free piezoelectric ceramics.This has motivated us to come out with a review on recent advances in development of lead-free piezoelectric ceramics in China.The emphases are especially on the preparation and electric properties of barium titanate-based materials,bismuth sodium titanate and related materials,alkaline niobate and related materials,bismuth layerstructured materials,as well as texture engineering of ceramics and some of their single crystals.Hopefully,this could give further impetus to the researchers to continue their e®orts in this promising area and also draw the attentions from legislature,research o±ce,industrial and publics.展开更多
In this work,we present a new piezoelectric solid solution consisting of two typical alkali niobate-based materials,K_(0.5)Na_(0.5)NbO_(3)(KNN)and Li_(0.15)Na_(0.85)NbO_(3)(LNN).Although KNN and LNN have the same pero...In this work,we present a new piezoelectric solid solution consisting of two typical alkali niobate-based materials,K_(0.5)Na_(0.5)NbO_(3)(KNN)and Li_(0.15)Na_(0.85)NbO_(3)(LNN).Although KNN and LNN have the same perovskite structure,they exhibit extremely different electrical properties and mechanical behaviors.The phase structures,electrical and mechanical evolutions of the new lead-free piezoelectric materials with different ratios of KNN and LNN are comprehensively and theoretically investigated.According to the Xray diffraction patterns and curves of permittivity versus temperature,a series of complicated phase transitions can be found with varied LNN content.Rietveld refinement results based on XRD patterns reveal an oxygen octahedron tilting in the LNN-rich crystal structure,and simultaneously the reasons for octahedron tilting are discussed.The distorted crystal structure is accompanied by extremely decreased electric properties but increased mechanical properties,which reveals electrical and mechanical properties of alkali niobate-based piezoelectric ceramics strongly depend on their inner structures,and the enhancement of intrinsic hardness results in the deterioration of piezoelectric properties.Our work exhibits the detailed evolutions of structure,electrical and mechanical properties from KNN to LNN,which provides experimental and theoretical basis for development of new alkali niobate-based piezoelectric materials.展开更多
The strain behavior of 0.71 Pb(Mg_(1/3)Nb_(2/3))O_(3)ePbTiO_(3)(PMN-PT)single crystal prepared by a solidstate single crystal growth method was investigated on two most widely used orientations,i.e.,(001)-and(011)-ori...The strain behavior of 0.71 Pb(Mg_(1/3)Nb_(2/3))O_(3)ePbTiO_(3)(PMN-PT)single crystal prepared by a solidstate single crystal growth method was investigated on two most widely used orientations,i.e.,(001)-and(011)-oriented.A special emphasis was put on the correlation among longitudinal and transverse strains and the consequent volume change.We show that seemingly different strain behavior of(001)-and(011)-oriented crystals has the same origin,and the underlying mechanism excludes possible contribution from the frequently cited polarization rotation.In situ monitoring of electric field induced Poisson’s ratio further suggested that the polarization vectors contributing to the strain properties in PMN-PT are not confined to a unique direction forced by the crystallographic symmetry but possess a span of angular range.展开更多
The effects of alternating current poling(ACP)at 80℃on electrical properties of[001]-oriented 0.72 Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.28PbTiO_(3)(PMN-28PT)single crystals(SCs)have been investigated.The square-wave ACP SCs p...The effects of alternating current poling(ACP)at 80℃on electrical properties of[001]-oriented 0.72 Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.28PbTiO_(3)(PMN-28PT)single crystals(SCs)have been investigated.The square-wave ACP SCs poled at high voltage(HV,5 kV_(rms)/cm)occasionally showed large fluctuations and low opposite values of piezoelectric coefficient(d_(33)=±1370 pC/N)in one plate.This revealed spuriousmode vibrations(SMV)of impedance spectrum.However,after depolarizing and repolarizing the sample with a sine-wave ACP at low voltage(LV,3.5 kV_(rms)/cm),the d_(33) enhanced to be 1720 pC/N(+26%)and did not exhibit large fluctuation or opposite values in one plate any more.The impedance spectrum became clean and the abnormal SMV disappeared.We proposed four possible mechanisms of the SMV,and speculate that the main cause maybe by macro-scale sub-domain structure and/or phase change in the main domain structure and/or phase in the SC plate due to the specific poling conditions not eternal mechanical damage of PMN-PT SCs.This study will be useful to realize a high d_(33) and improve other properties of PMN-PT ACP SC ultrasonic transducers without any SMV for high-frequency medical imaging equipment.展开更多
基金This work is funded by National Natural Science Foundation of China(Nos.61904023,11974063)Fundamental Research Funds for the Cen-tral Universities(2021CDJQY-022)Natural Science Foundation of Chongqing(No.cstc2019jcyj-bshX0078,cstc2020jcyj-jqX0028).
文摘Yellow light-emitting diodes(LEDs) as soft light have attracted abundant attention in lithography room, museum and art gallery. However, the development of efficient yellow LEDs lags behind green and blue LEDs, and the available perovskites yellow LEDs suffer from the instability. Herein, a pressure-assisted cooling method is proposed to grow lead-free CsCu2I3single crystals, which possess uniform surface morphology and enhanced photoluminescence quantum yield(PLQY) stability, with only 10% PLQY losses after being stored in air after 5000 h.Then, the single crystals used for yellow LEDs without encapsulation exhibit a decent Correlated Color Temperature(CCT) of 4290 K, a Commission Internationale de l’Eclairage(CIE) coordinate of(0.38, 0.41), and an excellent 570-h operating stability under heating temperature of 100°C. Finally, the yellow LEDs facilitate the application in wireless visible light communication(VLC), which show a-3 dB bandwidth of 21.5 MHz and a high achievable data rate of 219.2 Mbps by using orthogonal frequency division multiplexing(OFDM) modulation with adaptive bit loading. The present work not only promotes the development of lead-free single crystals, but also inspires the potential of CsCu2I3in the field of yellow illumination and wireless VLC.
基金Project supported by the Basic Scientific Research Foundation of College and University in Heilongjiang Province,China(Grant No.2018QNL-16)the Guiding Science and Technology Project of Daqing City(GSTPDQ),China(Grant No.zd-2019-03)the National Natural Science Foundation of China(Grant Nos.11304061 and 51572056).
文摘The influence of temperature on mode coupling effect in piezoelectric vibrators remains unclear.In this work,we discuss the influence of temperature on two-dimensional(2D)mode coupling effect and electromechanical coupling coefficient of cylindrical[001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT piezoelectric single-crystal vibrator with an arbitrary configuration ratio.The electromechanical coupling coefficient kt decreases with temperature increasing,whereas k33 is largely invariant in a temperature range of 25℃-55℃.With the increase of temperature,the shift in the‘mode dividing point’increases the scale of the poling direction of the piezoelectric vibrator.The temperature has little effect on coupling constantΓ.At a given temperature,the coupling constantΓof the cylindrical vibrator is slightly greater than that of the rectangular vibrator.When the temperature changes,the applicability index(M)values of the two piezoelectric vibrators are close to 1,indicating that the coupling theory can be applied to piezoelectric vibrators made of late-model piezoelectric single crystals.
基金supported by the National Natural Science Foundation of China(No.51105193)the Natural Science Foundation of Jiangsu Province(No.BK20131362)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education InstitutionsJiangsu Students′Platform for Innovation and Entrepreneurship Training Program(No.201613655016X)
文摘Piezoelectric friction-inertial motor is known for its promise for a long-range and high-resolution motion.The movement of the slider/rotor of the motor is achieved by stick-slip effect.We report a relaxor-based-ferroelectric-single-crystal cymbal actuator and a miniature piezoelectric friction-inertial linear motor(abbreviated as PFILM)fabricated with the cymbal actuator.The cymbal actuator is fabricated with a 10 mm diameter disk of 0.70Pb(Mg_(1/3)Nb_(2/3))O_3-0.30PbTiO_3 single crystal.The displacement of the cymbal actuator increases almost proportionally from 0to 23μm with driving voltage up to 500 V,and the minimal hysteresis is observed.The cymbalPFILM with 20 mm motion range works under driving voltage frequency of ca.100 Hz to ca.5kHz,the fastest speed is obtained with 3.5kHz and the no-load speed is 14mm/s and the maximum thrust force is 98 mN.Compared with a PFILM based on multilayer piezoelectric ceramic,the proposed motor has a larger stroke under DC/quasistatic input voltage in fine motion mode,but a smaller driving force in long-travel mode due to lower resonance frequency.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10874236 and 60808010)
文摘From the sound velocity measured using the Brillouin scattering technique, the elastic, piezoelectric, and dielectric constants of a high-quality monodomain tetragonal Rh:BaTiO3 single crystal are determined at room temperature. The elastic constants are in fairly good agreement with those of the BaTiO3 single crystal, measured previously by Brillouin scattering and the low-frequency equivalent circuit methods. However, their electromeehanical properties are significantly different. Based on the sound propagation equations and these results, the directional dependence of the compressional modulus and the shear modulus of Rh:BaTiO3 in the (010) plane is investigated. Some properties of sound propagation and electromechanical coupling in the crystal are discussed.
文摘Lead-free piezoelectric (K0.5sNa0.5)1-xLixNbO3 (x = 0at%-20at%) ceramics were synthesized by spark plasma sintering (SPS) at low temperature and the effects of LiNbO3 addition on its crystal structure and properties were also studied. When the Li content was less than 6at%, a single proveskite phase with the similar structure of (K0.5Na0.5)NbO3 was formed; and a secondary phase with K3Li2Nb5O15 structure was observed in the 6at% 〈 x 〈 20at% compositional range. Furthermore, LiNbO3 existed as the third phase when the Li content was higher than 8at%. The grain sizes increased from 200-500 nm to 5-8 μm when the K3Li2Nb5O15 and LiNbO3 like phases were formed. With increasing Li content, the relative density of the ceramics first decreased from 97% to 93% and then kept constant. The piezoelectric coefficient d33, dielectric constant, and planner electromechanical coupling factor exhibited a decreasing tendency with increasing Li content because of the decrease in density and the formation of the secondary phase such as K3Li2Nb5O15 and LiNbO3. The formation of dense microstructure with a single phase is necessary in improving the properties of the (K0.5Na0.5)1-xLixNbO3 ceramics.
基金Funded by the Natural Science Foundation of Fujian Province,China(No.2013J05010)the Scientific Research Foundation of Huaqiao University(Nos.11BS403,11BS404)
文摘The crystal intrinsic orientation effect on the piezoelectric response of multi-domain 0.26Pb(Inl/2Nbm)O3-0.46Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PIN-PMN-0.28PT) crystals was investigated by coordinate transformation method. The results indicate that crystal intrinsic orientation effect plays a crucial role in determining the piezoelectric properties of multi-domain crystals. Almost 58% and 69% of the transverse piezoelectric coefficients d31 and d32, respectively, and 67% longitudinal piezoelectric coefficient d33 of multi- domain PIN-PMN-0.28PT crystals poled along [011 ]c originate from crystal intrinsic orientation effect. For [001 ]c poled multi-domain PIN-PMN-0.28PT crystals, intrinsic orientation effect contributes to the transverse and longitudinal piezoelectric coefficient at least 79% and 74%, respectively.
基金This work is supported by the National Nature Science Foundation of China(Grant Nos.52102143,51772239,62001369 and 51761145024)Shaanxi province project(2017ktpt-21 and 2018TD-024)Jiangxi Technological Innovation Guidance Science and Technology Plan(Grant No.S20212BDH80017)。
文摘To further enhance the property of piezoelectric materials is of great significance to improve the overall performance of electro-mechanical devices.Here in this work,we propose a thermal annealing and high temperature poling approach to achieve significantly enhanced piezoelectricity in Pb(In_(1/2)Nb_(1/2))O_(3)single bondPb(Mg_(1/3)Nb_(2/3))O_(3)single bondPbTiO_(3)(PIN-PMN-PT)crystals with a morphotropic phase boundary(MPB)composition.The main idea of our approach is to realize a more sufficiently polarized crystal via active manipulation of defects and orientation of defect polarization.Manipulation of defect dipoles by the high temperature poling is proved by the piezo-response force microscopy.Finally,a d_(33)of 3300 pC/N and a SE of 0.25%are obtained,nearly 60%higher than that of conventionally poled crystals.Moreover,such a boosting of piezoelectric property is obtained under a maintained Curie temperature.Our research not only reveals the active control of defect dipole via modified poling method in the PIN-PMN-PT crystal,but also provides a feasible strategy to further improve the property of piezoelectric materials.
文摘Relaxor ferroelectric single crystals PMNT with the size of φ40 mm×80 mm have been grown by a modified Bridgman method and their ferroelectric and piezoelectric properties have been characterized. The properties varied with the compositions and cut types. On the (001) cut, PMNT76/24 single crystals exhibited a dielectric constant ε of about 3 400, a dielectric loss of tanδ 【0.7%, a piezoelectric constant d33 of 980 pC/N, an electromechanical coupling factor kt of 0.55 and Tc of about 110℃. whereas the properties of PMNT67/33 single crystals on (001) cut were betler: e of about 5 300, tan5 【0.6%, d33 up to 3 000 pC/N, kt 0.64, K33 0.93 and Tc of about 150℃. The piezoelectric properties on other cuts such as (110) and (111) were much lower than those on the (001) cut. The rhombohedral PMNT crystals grown by this method showed more excellent piezoelectric properties than those grown by high temperature solution method and higher value of kt than the rhombohedral PZNT single crystals. it has also
基金supported by the National Natural Science Foundation of China(No.11272222)the Key Project of Hebei Provincial Education Department of China(No.ZD2017072)
文摘The dispersion behavior of the shear horizontal (SH) waves in the coupled structure consisting of a piezomagnetic substrate and an orthorhombic piezoelectric layer is investigated with different cut orientations. The surface of the piezoelectric layer is mechanically free, electrically shorted, or open, while the surface of the piezomagnetic substrate is mechanically free, magnetically open, or shorted. The dispersion relations are derived for four electromagnetic boundary conditions. The dispersion characteristics are graphically illustrated for the layered structure with the PMN-PT layer perfectly bonded on the CoFe2O4 substrate. The effects of the PMN-PT cut orientations, the electromagnetic boundary conditions, and the thickness ratio of the layer to the substrate on the dispersion behavior are analyzed and discussed in detail. The results show that, (i) the effect of the cut orientation on the dispersion curves is very obvious, (ii) the electrical boundary conditions of the PMN-PT layer dominate the propagation feature of the SH waves, and (iii) the thickness ratio has a significant effect on the phase velocity when the wave number is small. The results of the present paper can provide valuable theoretical references to the applications of piezoelectric/piezomagnectic structure in acoustic wave devices.
基金This study was partly supported by Grant-in-Aid for Scientific Research on Priority Areas"Novel States of Matter Induced by Frustration"(19052002)the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy,Republic of Korea。
文摘Single crystals of x(Bi,K)TiO_(3)-(1-x)(Bi,Na)TiO_(3)(0.11≤x≤0.47) were grown by a flux method and their polarization and piezoelectric properties were investigated along h100i cubic at 25℃.Rietveld analysis of powder X-ray diffraction data provides a tentative phase diagram in this system.rhombohedral R3c for x≤0.22,pseudocubic for 0.22<x<0.3 and tetragonal P4mm for 0.3≤x.Piezoelectric strain properties show that the crystals(x=0.38)exhibited an extremely large piezoelectric strain constant of 637 pm/V.
基金This work was financially supported by the National Natural Science Foundation of China(NSFC Grant No.51601101)Natural Science Foundation of Ningbo(Grant No.202003N4165).
文摘The dielectric and pyroelectric performances of 91.5Na_(0.5)Bi_(0.5)TiO_(3)-8.5K_(0.5)Bi_(0.5)TiO_(3)lead-free single crystal were investigated.The depolarization temperature of the crystal is about 153°C.Among the<001>,<110>,and<111>crystallographic orientations,the<111>-oriented crystal possesses the highest pyroelectric coefficient and the largest figures of merit,and the values of p,Fv,and Fd are 5.63×10^(−4)C/m^(2)·K,0.06 m^(2)/C,and 21.5μPa−1/2 for the<111>-oriented crystal at room temperature.The Fd and Fv exhibit weak frequency dependence in the range of 100-300 Hz.With the increase of the temperature,the value of p increases,while the value of Fv decreases from 18°C to 103°C.
基金support from the National Natural Science Foundation of China(Grant No.52002218)the Natural Science Foundation of Shandong Province(Grant No.ZR2020QE031)+2 种基金the State Key Laboratory of Solidification Processing in NWPU(Grant No.SKLSP202209)the National Key Research and Development Program of China(Grant No.2022YFB3605704)the Qilu Young Scholars Program of Shandong University.
文摘Ba_(0.77)Ca_(0.23)TiO_(3)(BCT)single crystal has been widely studied as a promising lead-free ferroelectric material.In this work,high-quality BCT crystal was successfully grown by the Czochralski(CZ)method.The as-grown crystal is crack-free and shows black coloration.It possesses a high dielectric stability over a wide temperature range,while the dielectric loss is rather small below 90℃.Furthermore,it possesses excellent ferroelectric properties with residual polarization strength(Pr)and coercive field(Ec)of 17.93μC/cm^(2) and 8.47 kV/cm,respectively.Besides,BCT crystal shows large electromechanical coupling factors,with kt,k31,k33 and k15 of 0.535,0.254,0.714 and 0.721,respectively.The piezoelectric coefficients d31,d33 and d15 are measured to be−36.5,130 and 246 pC/N,respectively.
基金supports from The National Nature Science Foundation of China(NSFC,Nos.50072039,20151003,50572113,50932007)The Ministry of Sciences and Technology of China(MOST)through 973-projects(Nos.2002CB613307,2009CB623305)+3 种基金863-Projects(Nos.2001AA325070,2006AA03Z430)The Science and Technology Commission of Shanghai Municipality(Nos.05JC14079,08JC1420500,10XD1404700)Shanghai Institute of Ceramics(No.SCX200409)are gratefully acknowledged.
文摘There are a large number of research publications on the hot topic of environmental friendly leadfree piezoelectric materials worldwide in the last decade.The number of researchers and institutions involved from China is much larger than other countries or regions.The publications by Chinese researchers cover a broad spectrum on the preparations,structures,properties and applications of lead-free piezoelectric ceramics.This has motivated us to come out with a review on recent advances in development of lead-free piezoelectric ceramics in China.The emphases are especially on the preparation and electric properties of barium titanate-based materials,bismuth sodium titanate and related materials,alkaline niobate and related materials,bismuth layerstructured materials,as well as texture engineering of ceramics and some of their single crystals.Hopefully,this could give further impetus to the researchers to continue their e®orts in this promising area and also draw the attentions from legislature,research o±ce,industrial and publics.
基金supported by the National Natural Science Foundation of China(Grant No.51332003,No.11572057 and No.11702037)Program for Changjiang Scholars and Innovative Research Team(IRT14R37).
文摘In this work,we present a new piezoelectric solid solution consisting of two typical alkali niobate-based materials,K_(0.5)Na_(0.5)NbO_(3)(KNN)and Li_(0.15)Na_(0.85)NbO_(3)(LNN).Although KNN and LNN have the same perovskite structure,they exhibit extremely different electrical properties and mechanical behaviors.The phase structures,electrical and mechanical evolutions of the new lead-free piezoelectric materials with different ratios of KNN and LNN are comprehensively and theoretically investigated.According to the Xray diffraction patterns and curves of permittivity versus temperature,a series of complicated phase transitions can be found with varied LNN content.Rietveld refinement results based on XRD patterns reveal an oxygen octahedron tilting in the LNN-rich crystal structure,and simultaneously the reasons for octahedron tilting are discussed.The distorted crystal structure is accompanied by extremely decreased electric properties but increased mechanical properties,which reveals electrical and mechanical properties of alkali niobate-based piezoelectric ceramics strongly depend on their inner structures,and the enhancement of intrinsic hardness results in the deterioration of piezoelectric properties.Our work exhibits the detailed evolutions of structure,electrical and mechanical properties from KNN to LNN,which provides experimental and theoretical basis for development of new alkali niobate-based piezoelectric materials.
基金supported by the Leading Foreign Research Institute Recruitment Program(No.2017K1A4A3015437)through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT.SGL acknowledges the financial support from Defense Agency for Technology and Quality(DTaQ,E 180001)。
文摘The strain behavior of 0.71 Pb(Mg_(1/3)Nb_(2/3))O_(3)ePbTiO_(3)(PMN-PT)single crystal prepared by a solidstate single crystal growth method was investigated on two most widely used orientations,i.e.,(001)-and(011)-oriented.A special emphasis was put on the correlation among longitudinal and transverse strains and the consequent volume change.We show that seemingly different strain behavior of(001)-and(011)-oriented crystals has the same origin,and the underlying mechanism excludes possible contribution from the frequently cited polarization rotation.In situ monitoring of electric field induced Poisson’s ratio further suggested that the polarization vectors contributing to the strain properties in PMN-PT are not confined to a unique direction forced by the crystallographic symmetry but possess a span of angular range.
文摘The effects of alternating current poling(ACP)at 80℃on electrical properties of[001]-oriented 0.72 Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.28PbTiO_(3)(PMN-28PT)single crystals(SCs)have been investigated.The square-wave ACP SCs poled at high voltage(HV,5 kV_(rms)/cm)occasionally showed large fluctuations and low opposite values of piezoelectric coefficient(d_(33)=±1370 pC/N)in one plate.This revealed spuriousmode vibrations(SMV)of impedance spectrum.However,after depolarizing and repolarizing the sample with a sine-wave ACP at low voltage(LV,3.5 kV_(rms)/cm),the d_(33) enhanced to be 1720 pC/N(+26%)and did not exhibit large fluctuation or opposite values in one plate any more.The impedance spectrum became clean and the abnormal SMV disappeared.We proposed four possible mechanisms of the SMV,and speculate that the main cause maybe by macro-scale sub-domain structure and/or phase change in the main domain structure and/or phase in the SC plate due to the specific poling conditions not eternal mechanical damage of PMN-PT SCs.This study will be useful to realize a high d_(33) and improve other properties of PMN-PT ACP SC ultrasonic transducers without any SMV for high-frequency medical imaging equipment.