Morphing wing has attracted many research attention and effort in aircraft technology development because of its advantage in lift to draft ratio and flight performance.Morphing wing technology combines the lift and c...Morphing wing has attracted many research attention and effort in aircraft technology development because of its advantage in lift to draft ratio and flight performance.Morphing wing technology combines the lift and control surfaces into a seamless wing and integrates the primary structure together with the internal control system.It makes use of the wing aeroelastic deformation induced by the control surface to gain direct force control through desirable redistribution of aerodynamic forces.However some unknown mechanical parameters of the control system and complexity of the integrated structure become a main challenge for dynamic modeling of morphing wing.To solve the problem,a method of test data based modal sensitivity analysis is presented to improve the morphing wing FE model by evaluating the unknown parameters and identifying the modeling boundary conditions.An innovative seamless morphing wing with the structure integrated with a flexible trailing edge control system is presented for the investigation.An experimental model of actuation system driven by a servo motor for the morphing wing is designed and established.By performing a vibration test and the proposed modal sensitivity analysis,the unknown torsional stiffness of the servo motor and the boundary condition of the actuation mechanism model is identified and evaluated.Comparing with the test data,the average error of the first four modal frequency of the improved FE model is reduced significantly to less than 4%.To further investigate the morphing wing modeling,a wing box and then a whole morphing wing model including the skin and integrated with the trailing edge actuation system are established and tested.By using the proposed method,the FE model is improved by relaxing the constraint between the skin and actuation mechanism.The results show that the average error of the first three modal frequency of the improved FE model is reduced to less than 6%.The research results demonstrate that the presented seamless morphing wing integrated with a flexible trailing edge control surface can improve aerodynamic characteristics.By using the test data based modal sensitivity analysis method,the unknown parameter and boundary condition of the actuation model can be determined to improve the FE model.The problem in dynamic modeling of high accuracy for a morphing wing can be solved in an effective manner.展开更多
Variable camber wing technology is one of the important development trends of green aviation at present.Through smooth,seamless,continuous and adaptive change of wing camber,the aerodynamic performance is improved in ...Variable camber wing technology is one of the important development trends of green aviation at present.Through smooth,seamless,continuous and adaptive change of wing camber,the aerodynamic performance is improved in achieving increase in lift and reduction in resistance and noise.Based on the aerodynamic validation model CAE-AVM,Chinese Aeronautical Establishment(CAE)has carried out the design and validation of a variable camber wing,proposed an aerodynamic deformation matrix for the leading and trailing edges of aircraft wings in takeoff,landing and cruise conditions.Various structures and driving schemes are compared,and several key technology problems of leading and trailing edge deformation are solved.A full-size leading edge wind tunnel test piece with a span of 2.7 m and a trailing edge ground function test piece are developed.The deformation and shape maintenance capabilities of the leading edge is verified under real wind load conditions,and the load bearing and deformation capabilities of the trailing edge is verified under simulated follow-on load.The results indicate that the leading and trailing edges of the variable camber wing can achieve the required deformation angle and have a certain load-bearing capacity.Our study can provide some insights into the application of variable camber wing technology for civil aircraft.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 11102019)
文摘Morphing wing has attracted many research attention and effort in aircraft technology development because of its advantage in lift to draft ratio and flight performance.Morphing wing technology combines the lift and control surfaces into a seamless wing and integrates the primary structure together with the internal control system.It makes use of the wing aeroelastic deformation induced by the control surface to gain direct force control through desirable redistribution of aerodynamic forces.However some unknown mechanical parameters of the control system and complexity of the integrated structure become a main challenge for dynamic modeling of morphing wing.To solve the problem,a method of test data based modal sensitivity analysis is presented to improve the morphing wing FE model by evaluating the unknown parameters and identifying the modeling boundary conditions.An innovative seamless morphing wing with the structure integrated with a flexible trailing edge control system is presented for the investigation.An experimental model of actuation system driven by a servo motor for the morphing wing is designed and established.By performing a vibration test and the proposed modal sensitivity analysis,the unknown torsional stiffness of the servo motor and the boundary condition of the actuation mechanism model is identified and evaluated.Comparing with the test data,the average error of the first four modal frequency of the improved FE model is reduced significantly to less than 4%.To further investigate the morphing wing modeling,a wing box and then a whole morphing wing model including the skin and integrated with the trailing edge actuation system are established and tested.By using the proposed method,the FE model is improved by relaxing the constraint between the skin and actuation mechanism.The results show that the average error of the first three modal frequency of the improved FE model is reduced to less than 6%.The research results demonstrate that the presented seamless morphing wing integrated with a flexible trailing edge control surface can improve aerodynamic characteristics.By using the test data based modal sensitivity analysis method,the unknown parameter and boundary condition of the actuation model can be determined to improve the FE model.The problem in dynamic modeling of high accuracy for a morphing wing can be solved in an effective manner.
基金supported by the National Research Project“Variable Camber Wing Technology(VCAN)”,China。
文摘Variable camber wing technology is one of the important development trends of green aviation at present.Through smooth,seamless,continuous and adaptive change of wing camber,the aerodynamic performance is improved in achieving increase in lift and reduction in resistance and noise.Based on the aerodynamic validation model CAE-AVM,Chinese Aeronautical Establishment(CAE)has carried out the design and validation of a variable camber wing,proposed an aerodynamic deformation matrix for the leading and trailing edges of aircraft wings in takeoff,landing and cruise conditions.Various structures and driving schemes are compared,and several key technology problems of leading and trailing edge deformation are solved.A full-size leading edge wind tunnel test piece with a span of 2.7 m and a trailing edge ground function test piece are developed.The deformation and shape maintenance capabilities of the leading edge is verified under real wind load conditions,and the load bearing and deformation capabilities of the trailing edge is verified under simulated follow-on load.The results indicate that the leading and trailing edges of the variable camber wing can achieve the required deformation angle and have a certain load-bearing capacity.Our study can provide some insights into the application of variable camber wing technology for civil aircraft.