Volumetric elastic modulus (VEM) is an important parameter in biophysics and biomechanics of plants for in particular understanding cell growth. This paper proposes a new relation that can be used for precisely dete...Volumetric elastic modulus (VEM) is an important parameter in biophysics and biomechanics of plants for in particular understanding cell growth. This paper proposes a new relation that can be used for precisely determining VEM. With the aid of this relation, it shows that the exponential approximation of the pressure-volume relationship adopted in most of the literatures in this field may lead to serious errors on VEM.展开更多
Rare earth elements(REEs)as nonessential trace elements are enriched in living organisms and threaten their health.To early detect and reduce REE enrichment in living organisms,scientists are focused on clarifying the...Rare earth elements(REEs)as nonessential trace elements are enriched in living organisms and threaten their health.To early detect and reduce REE enrichment in living organisms,scientists are focused on clarifying the enrichment process of REEs in living organisms and its risks.However,the enrichment process of REEs in edible plant cells has remained unclear.Herein,by using interdisciplinary methods and techniques,the enrichment process of lanthanum(La(Ⅲ))in the leaf cells of lettuce(Lactuca sativa L.)was investigated.(1)When La(Ⅲ)exposure dose is 0.5-5μmol/L,La(Ⅲ)is enriched outside the plasma membrane(PM).In this zone,La(Ⅲ)is bound to vitronectin-like protein(VN)to form La-VN complexes;(2)When La(Ⅲ)exposure dose is 5-20μmol/L,besides the zone outside the PM,La(Ⅲ)is also enriched on the PM and bound to arabinogalactan proteins(AGPs)to form La-AGPs complexes;(3)When La(Ⅲ)exposure dose is 20-140μmol/L,besides the zone outside and on the PM,La(Ⅲ)is enriched inside the PM;(4)When La(Ⅲ)exposure dose is 60-140μmol/L,malondialdehyde content(an important indicator of invisible damage)significantly increases.Thus,as La(Ⅲ)exposure dose increases,La(Ⅲ)gradually migrates from outside the PM to the PM and inside the PM,enriching in these zones in turn.The enriched La(Ⅲ)will cause invisible damage to lettuce leaf cells and even enter human bodies along food chains.These results provide references for investigating the enrichment process of REEs in plants and its environmental risks,and finding strategies to early detect and reduce REE enrichment in plants.展开更多
We used the leaf blade of rice (cultivars were Nonghu 6, Sugeng 2, Huyou 2 and Hanfeng) as initial material for protoplast culture, and a great number of regenerated plants were obtained. Rice seeds were sterilized an...We used the leaf blade of rice (cultivars were Nonghu 6, Sugeng 2, Huyou 2 and Hanfeng) as initial material for protoplast culture, and a great number of regenerated plants were obtained. Rice seeds were sterilized and germinated. The immature leaves were cut into 3-5 mm pieces when the third or forth leaf appeared. Leaf pieces were inoculated on MS medium with 2,4-D 4 mg/1, NAA 2mg/1 and IAA Img/1. After 2 wk culture, calli were induced and subcultured once or twice for multiplication. 3-5 g calli were transferred to the modified MS liquid medium with 2,4-D 2 mg/1 and KT 0.5mg/1 for suspension culture. Embryogenic cell suspension was established after 2 mo culture. The effect of the growth period of suspension cells on the展开更多
In plants, the chloroplast is the main reactive oxygen species (ROS) producing site under high light stress. Catalase (CAT), which decomposes hydrogen peroxide (H2O2), is one of the controlling enzymes that main...In plants, the chloroplast is the main reactive oxygen species (ROS) producing site under high light stress. Catalase (CAT), which decomposes hydrogen peroxide (H2O2), is one of the controlling enzymes that maintains leaf redox homeostasis. The catalase mutants with reduced leaf catalase activity from different plant species exhibit an H2O2-induced leaf cell death phenotype. This phenotype was differently affected by light intensity or photoperiod, which may be caused by plant species, leaf redox status or growth conditions. In the rice CAT mutant nitric oxide excess 1 (noe1), higher H2O2 levels induced the generation of nitric oxide (NO) and higher S-nitrosothiol (SNO) levels, suggesting that NO acts as an important endogenous mediator in H2O2-induced leaf cell death. As a free radical, NO could also react with other intracellular and extracellular targets and form a series of related molecules, collectively called reactive nitrogen species (RNS). Recent studies have revealed that both RNS and ROS are important partners in plant leaf cell death. Here, we summarize the recent progress on H2O2-induced leaf cell death and the crosstalk of RNS and ROS signals in the plant hypersensitive response (HR), leaf senescence, and other forms of leaf cell death triggered by diverse environmental conditions.展开更多
In multicellular plant organs, cell shape formation depends on molecular switches to transduce developmental or environmental signals and to coordinate cell-to-cell communi- cation. Plants have a specific subfamily of...In multicellular plant organs, cell shape formation depends on molecular switches to transduce developmental or environmental signals and to coordinate cell-to-cell communi- cation. Plants have a specific subfamily of the Rho GTPase family, usually called Rho of Plants (ROP), which serve as a critical signal transducer involved in many cellular processes. In the last decade, important advances in the ROP-mediated regulation of plant cell morphogenesis have been made by using Arubidopsis thaliana leaf and cotyledon pavement cells. Especially, the auxin-ROP signaling networks have been demonstrated to control interdigitated growth of pavement ceils to form jigsaw-puzzle shapes. Here, we review findingsrelated to the discovery of this novel auxin-signaling mecha- nism at the cell surface. This signaling pathway is to a large extent independent of the well-known Transport Inhibitor Response (TIR)-Auxin Signaling F-Box (AFB) pathway, and instead requires Auxin Binding Protein 1 (ABP1) interaction with the plasma membrane-localized, transmembrane kinase (TMK) receptor-like kinase to regulate ROP proteins. Once activated, ROP influences cytoskeletal organization and inhibits endocytosis of the auxin transporter PINt. The present review focuses on ROP signaling and its self-organizing feature allowing ROP proteins to serve as a bustling signal decoder and integrator for plant cell morphogenesis.展开更多
基金supported by the National Natural Science Foundation of China(10772100)
文摘Volumetric elastic modulus (VEM) is an important parameter in biophysics and biomechanics of plants for in particular understanding cell growth. This paper proposes a new relation that can be used for precisely determining VEM. With the aid of this relation, it shows that the exponential approximation of the pressure-volume relationship adopted in most of the literatures in this field may lead to serious errors on VEM.
基金Project supported by the National Natural Science Foundation of China(21977051,21501068,31170477)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Rare earth elements(REEs)as nonessential trace elements are enriched in living organisms and threaten their health.To early detect and reduce REE enrichment in living organisms,scientists are focused on clarifying the enrichment process of REEs in living organisms and its risks.However,the enrichment process of REEs in edible plant cells has remained unclear.Herein,by using interdisciplinary methods and techniques,the enrichment process of lanthanum(La(Ⅲ))in the leaf cells of lettuce(Lactuca sativa L.)was investigated.(1)When La(Ⅲ)exposure dose is 0.5-5μmol/L,La(Ⅲ)is enriched outside the plasma membrane(PM).In this zone,La(Ⅲ)is bound to vitronectin-like protein(VN)to form La-VN complexes;(2)When La(Ⅲ)exposure dose is 5-20μmol/L,besides the zone outside the PM,La(Ⅲ)is also enriched on the PM and bound to arabinogalactan proteins(AGPs)to form La-AGPs complexes;(3)When La(Ⅲ)exposure dose is 20-140μmol/L,besides the zone outside and on the PM,La(Ⅲ)is enriched inside the PM;(4)When La(Ⅲ)exposure dose is 60-140μmol/L,malondialdehyde content(an important indicator of invisible damage)significantly increases.Thus,as La(Ⅲ)exposure dose increases,La(Ⅲ)gradually migrates from outside the PM to the PM and inside the PM,enriching in these zones in turn.The enriched La(Ⅲ)will cause invisible damage to lettuce leaf cells and even enter human bodies along food chains.These results provide references for investigating the enrichment process of REEs in plants and its environmental risks,and finding strategies to early detect and reduce REE enrichment in plants.
文摘We used the leaf blade of rice (cultivars were Nonghu 6, Sugeng 2, Huyou 2 and Hanfeng) as initial material for protoplast culture, and a great number of regenerated plants were obtained. Rice seeds were sterilized and germinated. The immature leaves were cut into 3-5 mm pieces when the third or forth leaf appeared. Leaf pieces were inoculated on MS medium with 2,4-D 4 mg/1, NAA 2mg/1 and IAA Img/1. After 2 wk culture, calli were induced and subcultured once or twice for multiplication. 3-5 g calli were transferred to the modified MS liquid medium with 2,4-D 2 mg/1 and KT 0.5mg/1 for suspension culture. Embryogenic cell suspension was established after 2 mo culture. The effect of the growth period of suspension cells on the
基金supported by grants from the National Natural Science Foundation of China (31171514, 30600407)the Ministry of Science and Technology of China (2009CB118506)+2 种基金an international exchange grant provided by the National Natural Science Foundation of Chinathe Royal Society of Edinburgh (30811130222)supported by a BBSRC grant BB/D0118091/1
文摘In plants, the chloroplast is the main reactive oxygen species (ROS) producing site under high light stress. Catalase (CAT), which decomposes hydrogen peroxide (H2O2), is one of the controlling enzymes that maintains leaf redox homeostasis. The catalase mutants with reduced leaf catalase activity from different plant species exhibit an H2O2-induced leaf cell death phenotype. This phenotype was differently affected by light intensity or photoperiod, which may be caused by plant species, leaf redox status or growth conditions. In the rice CAT mutant nitric oxide excess 1 (noe1), higher H2O2 levels induced the generation of nitric oxide (NO) and higher S-nitrosothiol (SNO) levels, suggesting that NO acts as an important endogenous mediator in H2O2-induced leaf cell death. As a free radical, NO could also react with other intracellular and extracellular targets and form a series of related molecules, collectively called reactive nitrogen species (RNS). Recent studies have revealed that both RNS and ROS are important partners in plant leaf cell death. Here, we summarize the recent progress on H2O2-induced leaf cell death and the crosstalk of RNS and ROS signals in the plant hypersensitive response (HR), leaf senescence, and other forms of leaf cell death triggered by diverse environmental conditions.
基金supported by startup funds to D. L. from Center for Genomics and Biotechnology, Fujian Agriculture and Forestry Universitysupported by Natural Science Foundation of China (31361140354)
文摘In multicellular plant organs, cell shape formation depends on molecular switches to transduce developmental or environmental signals and to coordinate cell-to-cell communi- cation. Plants have a specific subfamily of the Rho GTPase family, usually called Rho of Plants (ROP), which serve as a critical signal transducer involved in many cellular processes. In the last decade, important advances in the ROP-mediated regulation of plant cell morphogenesis have been made by using Arubidopsis thaliana leaf and cotyledon pavement cells. Especially, the auxin-ROP signaling networks have been demonstrated to control interdigitated growth of pavement ceils to form jigsaw-puzzle shapes. Here, we review findingsrelated to the discovery of this novel auxin-signaling mecha- nism at the cell surface. This signaling pathway is to a large extent independent of the well-known Transport Inhibitor Response (TIR)-Auxin Signaling F-Box (AFB) pathway, and instead requires Auxin Binding Protein 1 (ABP1) interaction with the plasma membrane-localized, transmembrane kinase (TMK) receptor-like kinase to regulate ROP proteins. Once activated, ROP influences cytoskeletal organization and inhibits endocytosis of the auxin transporter PINt. The present review focuses on ROP signaling and its self-organizing feature allowing ROP proteins to serve as a bustling signal decoder and integrator for plant cell morphogenesis.