期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Decay stages and meteorological factors affect microbial community during leaf litter in situ decomposition 被引量:1
1
作者 Haixin Zhang Yimei Huang +4 位作者 Shaoshan An Quanchao Zeng Baorong Wang Xuejuan Bai Qian Huang 《Soil Ecology Letters》 CSCD 2023年第3期61-73,共13页
Litter microorganisms play a crucial role in the biological decomposition in forest ecosystems;however,the coupling effect of meteorological and substrate changes on it during the different stages of leaf decompositio... Litter microorganisms play a crucial role in the biological decomposition in forest ecosystems;however,the coupling effect of meteorological and substrate changes on it during the different stages of leaf decomposition in situ remains unclear.Hence,according to meteorological factors dynamics,a one-year field litter of Quercus wutaishanica in situ decomposition experiment was designed for four decay stages in a warm temperate forest.Microbial community composition was characterized using Illumina sequencing of fungal ITS and bacterial 16S genes.Bacterial(6.6)and fungal(3.6)Shannon indexes were the largest after 125 days’litter decomposition(October).The relative abundance of Acidobacteria after 342 days and Bacteroidetes after 125 days were 3 and 24 times higher than after 31 days,respectively.Some non-dominant species(bacteria:Firmicutes,Planctomycotes,and Verrucomicrobia;fungi:Chytridiomycota and Glomeromomycota)may be absent or present at different decomposition stages due to litter properties or meteorological factors.Chemoheterotrophy and aerobic-chemoheterotrophy were the dominant bacterial functional groups,and the dominant fungal functional groups were saprotrophs,pathotrophs,and symbiotrophs.Precipitation and relative humidity significantly affected bacteria.Temperature,sunlight intensity,and net radiation significantly affected fungi.Besides,among the relative contributions of changes in bacterial and fungal community structure,leaf litter properties alone explained the variation of 5.51%and 10.63%.Microbial diversity and decay stage directly affected the litter mass-loss rate,with meteorological factors(precipitation,relative humidity,air temperature,and sunlight intensity)being indirect.Our findings highlight the importance of microbial diversity for leaf litter decomposition and the influence of meteorological factors. 展开更多
关键词 leaf litter decomposition microbial community composition meteorological factors Loess Plateau Quercus wutaishanica
原文传递
Adaptation of microbial communities to multiple stressors associated with litter decomposition of Pterocarya stenoptera 被引量:1
2
作者 Gaozhong Pu Jingjing Tong +4 位作者 Aimeng Su Xu Ma Jingjing Du Yanna Lv Xingjun Tian 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第5期1001-1013,共13页
To understand the further impacts of multiple stressors in freshwater, we investigated the effects of heavy metal (HM, Cu and Zn) and nutrient enrichments (nitrogen and phosphorus, NP) on microbial decomposition o... To understand the further impacts of multiple stressors in freshwater, we investigated the effects of heavy metal (HM, Cu and Zn) and nutrient enrichments (nitrogen and phosphorus, NP) on microbial decomposition of Pterocarya stenoptera litter and the associated extracellular enzyme activities and microbial biomass with microcosms. Results showed that the decomposition rates were slower in the polluted stream waters than those in the unpolluted ones, which corresponded to lower microbial biomass and integrated enzyme activities of cellulose and ^-glucosidase. The decomposition rates were accelerated at low HM level, which was associated with the stimulated enzyme activities of hydrolytic enzymes or was stimulated by both NP levels in polluted stream waters. In particular, the hydrolase enzyme activities of microbial communities in polluted stream waters were stimulated by low HM level, suggesting that low HM level-stimulated litter decomposition may be due to the increased enzymatic activities. When microbial communities were exposed to HM and NP simultaneously, the inhibitory effect (in unpolluted stream waters) or the stimulated effect (in polluted stream waters) of low HM concentration was enhanced and attenuated, respectively, which suggests that the NP antagonistic effect against HM toxicity on litter decomposition may contribute to the litter- associated extracellular enzyme activities. These results suggest that the may have antagonistic effects on stream ecosystem functioning. of HM and NP 展开更多
关键词 leaf decomposition heavy metal and nutrient mixture extracellular enzyme activity community adaptation microbial community
原文传递
Fungal community succession on decomposing leaf litter across five phylogenetically related tree species in a subtropical forest 被引量:2
3
作者 Danushka S.Tennakoon Chang‑Hsin Kuo +4 位作者 Witoon Purahong Eleni Gentekaki Chayakorn Pumas Itthayakorn Promputtha Kevin D.Hyde 《Fungal Diversity》 SCIE 2022年第4期73-103,共31页
Fungi are an essential component of the ecosystem.They play an integral role in the decomposition of leaf litter and return nutrients to the ecosystem through nutrient cycling.They are considered as the“key players”... Fungi are an essential component of the ecosystem.They play an integral role in the decomposition of leaf litter and return nutrients to the ecosystem through nutrient cycling.They are considered as the“key players”in leaf litter decomposition,because of their ability to produce a wide range of extracellular enzymes.Time-related changes of fungal communities during leaf litter decomposition have been relatively well-investigated.However,it has not been established how the tree species,tree phylogeny,and leaf litter chemistry influence fungal communities during decomposition.Using direct observations and a culturing approach,this study compiles fungi found in freshly collected leaf litter from five phylogenetically related,native tree species in Taiwan:Celtis formosana(CF),Ficus ampelas(FA),Ficus septica(FS),Macaranga tanarius(MT),and Morus australis(MA).We investigated(i)the effects of tree species(including tree phylogeny)and leaf litter chemistry on fungal community succession,and(ii)specific patterns of fungal succession(including diversity and taxonomic community assembly)on decomposing leaf litter across the selected tree species.We hypothesized that host species and leaf litter chemistry significantly affect fungal community succession.A total of 1325 leaves(CF:275,FA:275,FS:275,MT:275 and MA:225)were collected and 236 fungal taxa were recorded(CF:48,FA:46,FS:64,MT:42 and MA:36).Tree species relationships had variable associations on the fungal communities,as even closely related tree species had strongly differing communities during decomposition.A high number of species were unique to a single tree species and may indicate‘host-specificity’to a particular leaf litter.The overlap of microfungal species in pair wise comparisons of tree species was low(7–16%),and only 1–2%of microfungal species were observed in leaves of all tree species.The percentage of occurrences of fungal communities using Hierarchical Cluster Analyses(HCA)showed that there were at least four succession stages in each tree species during decomposition.Fungal diversity increased at the beginning of each tree species leaf decay,reached peaks,and declined at the final stages.Overall,our findings demonstrate that tree species and leaf litter chemistry are important variables in determining fungal diversity and community composition in leaf litter.Referring to the establishment of fungal discoveries from this experimental design,two new families,two new genera,40 new species and 56 new host records were reported.This study provides a host-fungus database for future studies on these hosts and increases the knowledge of fungal diversity in leaf litter. 展开更多
关键词 Fungal diversity ECOLOGY leaf litter decomposition Percentage of occurrences TAXONOMY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部