期刊文献+
共找到469篇文章
< 1 2 24 >
每页显示 20 50 100
Nutrient dynamics associated with leaf litter decomposition of three agroforestry tree species (Azadirachta indica, Dalbergia sissoo, and Melia azedarach) of Bangladesh 被引量:4
1
作者 Mahmood Hossain Mohammad Raqibul Hasan Siddique +2 位作者 Md. Saidur Rahman Md. Zaber Hossain Md. Mahedi Hasan 《Journal of Forestry Research》 SCIE CAS CSCD 2011年第4期577-582,共6页
Azadirachta indica A. Juss, Dalbergia, sissoo Roxb., and Melia azedarach L. are little studied species in nutrient return capabilities from leaf litter decomposition to maintenance of the soil fertility despite their ... Azadirachta indica A. Juss, Dalbergia, sissoo Roxb., and Melia azedarach L. are little studied species in nutrient return capabilities from leaf litter decomposition to maintenance of the soil fertility despite their importance in agroforestry practices of Bangladesh. A leaf litter decomposition experiment was conducted using a litterbag teeh7 nique to assess the nutrient reaun efficiency of these species. The de- composition rate of leaf litter was highest for M. azedarach and lowest for D. sissoo. Rainfall and temperature of study sites showed a significant (p〈0.05) positive relationship with the rate of leaf litter decomposition. The highest decay constant was observed for M. azedarach (6.67). Nitrogen and Phosphorus concentration in leaf litter showed a decreased trend sharply at the end of the first month, whereas rapid decrease of Potassium concentration was reported within 10 days. Conversely, higher concentration of nutrient was observed at the later stages of decomposition. All three species showed a similar pattern of nutrient release (K 〉 N 〉 P) during the decomposition process of leaf litter. Among the studied species, D. sissoo was best in terms of N and P return and A. indica was best in terms of K return. 展开更多
关键词 AGROFORESTRY decay constant DECOMPOSITION leaf litter andnutrient dynamics
下载PDF
Leaching of dissolved organic matter from seagrass leaf litter and its biogeochemical implications 被引量:4
2
作者 LIU Songlin JIANG Zhijian +5 位作者 ZHOU Chenyuan WU Yunchao ARBI Iman ZHANG Jingping HUANG Xiaoping TREVATHAN-TACKETT Stacey M. 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第8期84-90,共7页
Dissolved organic matter(DOM) represents a significant source of nutrients that supports the microbial-based food web in seagrass ecosystems. However, there is little information on how the various fractions of DOM ... Dissolved organic matter(DOM) represents a significant source of nutrients that supports the microbial-based food web in seagrass ecosystems. However, there is little information on how the various fractions of DOM from seagrass leaves contributed to the coastal biogeochemical cycles. To address this gap, we carried out a 30-day laboratory chamber experiment on tropical seagrasses Thalassia hemprichii and Enhalus acoroides. After 30 days of incubation, on average 22% carbon(C), 70% nitrogen(N) and 38% phosphorus(P) of these two species of seagrass leaf litter was released. The average leached dissolved organic carbon(DOC), dissolved organic nitrogen(DON) and dissolved organic phosphorus(DOP) of these two species of seagrass leaf litter accounted for 55%, 95% and 65% of the total C, N and P lost, respectively. In the absence of microbes, about 75% of the total amount of DOC, monosaccharides(MCHO), DON and DOP were quickly released via leaching from both seagrass species in the first 9 days. Subsequently, little DOM was released during the remainder of the experiment. The leaching rates of DOC, DON and DOP were approximately 110, 40 and 0.70 μmol/(g·d). Leaching rates of DOM were attributed to the nonstructural carbohydrates and other labile organic matter within the seagrass leaf. Thalassia hemprichii leached more DOC, DOP and MCHO than E. acoroides. In contrast, E. acoroides leached higher concentrations of DON than T. hemprichii, with the overall leachate also having a higher DON: DOP ratio. These results indicate that there is an overall higher amount of DOM leachate from T. hemprichii than that of E. acoroides that is available to the seagrass ecosystem. According to the logarithmic model for DOM release and the in situ leaf litter production(the Xincun Bay, South China Sea), the seagrass leaf litter of these two seagrass species could release approximately 4×10~3 mol/d DOC, 1.4×10~3 mol/d DON and 25 mol/d DOP into the seawater. In addition to providing readily available nutrients for the microbial food web, the remaining particulate organic matter(POM)from the litter would also enter microbial remineralization processes. What is not remineralized from either DOM or POM fractions has potential to contribute to the permanent carbon stocks. 展开更多
关键词 dissolved organic matter Thalassia hemprichii Enhalus acoroides leaf litter LEACHING
下载PDF
Effects of leaf litter extraction fluid from dominant forest tree species on functional characteristics of soil microbial communities 被引量:2
3
作者 Jian Liang Zhe Lu +2 位作者 Zhongdong Yu Jincheng Wang Xiaoan Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第1期81-90,共10页
The effects of extraction fluids from the leaf litter from different dominant tree species on the functional characteristics of the soil microbial community were studied to understand how changes in soil quality and s... The effects of extraction fluids from the leaf litter from different dominant tree species on the functional characteristics of the soil microbial community were studied to understand how changes in soil quality and synergism between plants and soil contribute to the process of forest succession. Leaf litter from dominant tree species at different stages of succession were collected and extracted with sterile deionized water. After treating the soil of abandoned land with the different extraction fluids, we analyzed changes in carbon utilization of the soil microbial community in Biolog EcoPlates, then considered these results with those of our previous study on forest vegetation succession in the Malan forest. The leaf litter enhanced the metabolic capacity and functional diversity of the soil microbes, especially in the following combinations: the leaf litter of Quercus liaotungensis-Pinus tabulae- formis, P. tabulaeformis-Betula platyphylla, Q. liaotun- gensis and P. tabulaeformiss. Second, when litter from onespecies evaluated, the species enhanced metabolism and diversity in the order of their successional relationship: B. Platyphylla 〈 P. tabulaeformis 〈 Q. liaotungensis. After soils were treated with different leaf litters at 25 ℃ for 7 days, the sorting pattern of the PCA values, based on the similarity of carbon source utilization by the soil microbes, corresponded to the successional pattern on the basis of the similarity of community composition of forest plants. Thus, changes in soil properties caused by leaf litter from different dominant trees probably play a unique role in the successional pattern of a forest community. We thus pro- pose a successional mechanism that underlies the natural succession process within the Malan forest region. When the dominant forest species of the climax successional stage develops during the early successional stages, its forest litter probably alters soil properties such that the soil becomes unsuitable for the gradual growth and regenera- tion of the original dominant tree species but promotes the growth and establishment of later-invasive plants. In this way, the originally dominant species is replaced by the newly dominant tree species during forest succession. 展开更多
关键词 Biolog analysis FOREST leaf litter Soilmicrobes SUCCESSION
下载PDF
Leaf litter ecological fate in the Schelde Estuary in Belgium 被引量:2
4
作者 LUOYi MickyTackx +2 位作者 LIFa-yun MAODa-qing ZHOUQi-xing 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第4期563-567,共5页
Two dominant species of Willow( Salix triandra )and Reed (Phragmites australis) along the Schelde Estuary(in Belgium)were selected in this research. The pigments of higher plant was used as biomarkers, the deco... Two dominant species of Willow( Salix triandra )and Reed (Phragmites australis) along the Schelde Estuary(in Belgium)were selected in this research. The pigments of higher plant was used as biomarkers, the decomposition process of the two species were studied after they fall into the Schelde Estuary. After statistical analysis(Spearman rank order correlation, P <0 05), the results has shown the decomposition dynamics pattern of the pigments, and the willow showed different pattern in comparing with the reed, e.g. Chlorophyll a decomposition dynamics for willow is: y 1=12196 x 2 - 175895 x +1E+06+ k , R 2=0 5706 while for reed is: y 2=-37878 x 2+229782 x +734282+ k , R 2=0 9065 The precise time of the leaf litter spent in the water was also calculated as were less than 24 days, 24-37 days, longer than 37 days(willow)and less than 24 days, longer than 24 days(reed), the leaf litter fate of the two dominant species in the Schelde Estuary was also compared. 展开更多
关键词 leaf litter ecologcal fate Salix triandra Phragmites australis Schelde Estuary
下载PDF
Effects of soil fauna on leaf litter decomposition under different land uses in eastern coast of China
5
作者 Baoling Yang Wenwen Zhang +5 位作者 Hanmei Xu Shaojun Wang Xia Xu Huan Fan Han Y. H. Chen Honghua Ruan 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第4期968-977,共10页
Soil fauna decompose litter, whereas land use changes may significantly alter the composition and structure of soil fauna assemblages. However, little is known of the effects of land-use on the contribution of soil fa... Soil fauna decompose litter, whereas land use changes may significantly alter the composition and structure of soil fauna assemblages. However, little is known of the effects of land-use on the contribution of soil fauna to litter decomposition. We studied the impacts of soil fauna on the decomposition of litter from poplar trees under three different land uses (i.e. poplar-crop integrated system, poplar plantation, and cropland), from December 2013 to December 2014, in a coastal area of Northern Jiangsu Province. We collected litter samples in litterbags with three mesh sizes (5, 1 and 0. 01 mm, respectively) to quantify the contribution of various soil fauna to the decomposition of poplar leaf litter. Litter decomposition rates differed significantly by land use and were highest in the cropland, intermediate in the poplar-crop integrated system, and lowest in the poplar plantation. Soil fauna in the poplar-crop integrated system was characterized by the highest numbers of taxa and individuals, and highest Margalef's diversity, which suggested that agro-forestry ecosystems may support a greater quantity, distribution, and biodiversity of soil fauna than can single-species agriculture or plantation forestry. The individuals and groups of soil fauna in the macro-mesh litterbags were higher than in the meso-mesh litterbags underthe same land use types. The average contribution rate of meso- and micro-fauna to litter decomposition was 18.46%, which was higher than the contribution rate of macro-fauna (3.31%). The percentage of remaining litter mass was inversely related to the density of the soil fauna (P 〈 0.05) in poplar plantations; however, was unrelated in the poplar-crop integrated system and cropland. This may have been the result of anthropogenic interference in poplar-crop integrated systems and croplands. Our study suggested that when land-use change alters vegetation types, it can affect species composition and the structure of soil fauna assemblages, which, in turn, affects litter decomposition. 展开更多
关键词 Mesh sizes POPLAR leaf litter Soil fauna litter decomposition
下载PDF
Determination of Nutrient Contents in the Leaf Litter of <i>Diospyros crassiflora</i>S. (Hiern-FWTA) Plantation in Okwuta-Ibeku, Umuahia, Abia State, Nigeria
6
作者 Bruno Iniobong Nsien Eric Etim Offiong +1 位作者 Pretty Henry Dan Esther Ewongoabasi Eric 《Open Journal of Forestry》 2022年第1期162-176,共15页
Determination of nutrient contents in <i>Diospyros crassiflora</i> leaf litter was <span>carried out in the Forestry Research Institute of Nigeria (FRIN), Okwuta-Ibeku,</span> Umuahia, Abia Sta... Determination of nutrient contents in <i>Diospyros crassiflora</i> leaf litter was <span>carried out in the Forestry Research Institute of Nigeria (FRIN), Okwuta-Ibeku,</span> Umuahia, Abia State, Nigeria in 2016 and 2017. Three 1<span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">m </span></span></span><span><span><span style="font-family:;" "="">×<span> 1</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">m trays were randomly positioned for collection of leaf litter production from 4/5</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">years old <i>Diospyros crassiflora</i> species in each block (10</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">m </span></span></span><span><span><span style="font-family:;" "="">×<span> 25</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">m) within the plantation totaling 1.5</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">ha. A Randomised Complete Block Design (RCBD) with three replicates was used to study the mean monthly leaf litterfall of <i>Diospyros crassiflora</i>. Leaf litter was collected from each of the three litter trays per block and placed in paper bags every 28<sup>th</sup> day of each month from January-December in 2016 and in 2017. Fifteen grammes (15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">g) of properly mixed and oven-dried samples of <i>D. crassiflora</i> leaf litter were milled and sieved in 1</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">mm sieve;0.3</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">g was used to determine nutrient elements and their concentrations. The data obtained from mineral nutrient contents of <i>D. crassiflora</i> leaf litter was analysed using analysis of variance. Result reveals the mean concentrations of nitrogen</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">(1.41 and 1.41 mg<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">&#183;</span>l<sup><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span>1</sup>), phosphorus (0.18 and 0.18 mg<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">&#183;</span>l<sup><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span>1</sup>), potassium</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">(0.68 and 0.68 mg<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">&#183;</span>l<sup><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span>1</sup>), sodium (0.35 and 0.30 mg<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">&#183;</span>l<sup><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span>1</sup>), calcium</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">(1.57 and 1.56 mg<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">&#183;</span>l<sup><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span>1</sup>), magnesium</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">(0.32 and 0.31 mg<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">&#183;</span>l<sup><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span>1</sup>), chlorine (0.25 and 0.24 mg<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">&#183;</span>l<sup><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span>1</sup>), Organic carbon (0.03</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">and 0.03 mg<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">&#183;</span>l<sup><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span>1</sup>) and Organic matter</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">(1.17 and 1.18 mg<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">&#183;</span>l<sup><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span>1</sup>) etc. in <i>D. crassiflora</i> leaf litter in January-December (2016 and 2017). The study shows almost uniform distribution of mineral elements concentrations in 2016 and 2017.</span></span></span> 展开更多
关键词 Diospyros crassiflora PLANTATION leaf litter Nutrient Elements Concentrations
下载PDF
Responses of Soil Fauna Structure and Leaf Litter Decomposition to Effective Microorganism Treatments in Da Hinggan Mountains,China 被引量:4
7
作者 GAO Meixiang LI Jingke ZHANG Xueping 《Chinese Geographical Science》 SCIE CSCD 2012年第6期647-658,共12页
Microorganisms are nutritious resources for various soil fauna.Although soil fauna grazing affects microorganism composition and decomposition rate,the responses of soil fauna and leaf litter decomposition to added mi... Microorganisms are nutritious resources for various soil fauna.Although soil fauna grazing affects microorganism composition and decomposition rate,the responses of soil fauna and leaf litter decomposition to added microorganism is little understood.In this study,in the coniferous and broad-leaved mixed forest of Tahe County in the northern Da Hinggan Mountains,China,three sampling sites(each has an area of 10 m2) were selected.The first two sites were sprinkled with 250 times(EM1) and 1000 times(EM2) diluted effective microorganism(EM) preparations evenly,and the third site was sprinkled with the same volume of water as a control site.The responses of soil fauna structure and leaf litter decomposition to EM treatment were conducted during three years.The results revealed that EM treatment resulted in significant increase of soil organic matter.The number of soil fauna in the EM1 and EM2 sites increased by 12.88% and 2.23% compared to the control site,and among them springtails and mites showed the highest increase.However,the groups of soil fauna in the EM1 and EM2 sites decreased by 6 and 9,respectively.And the changes in the diversity and evenness index were relatively complicated.EM treatment slowed the decomposition of broad-leaved litter,but accelerated the decomposition of coniferous litter.However,the decomposition rate of broad-leaved litter was still higher than that of coniferous litter.The results of this study suggested that the added microorganisms could help individual growth of soil fauna,and this method led to a change in the process of leaf litter decomposition.This paper did not analyze the activity of soil microorganisms,thus it is difficult to clearly explain the complex relationships among litter type,soil fauna and soil microorganisms.Further research on this subject is needed. 展开更多
关键词 微生物处理 凋落物分解 土壤动物 大兴安岭 群落结构 分解率 中国 均匀度指数
下载PDF
Effect of Leaf Litter Treatment on Soil Microbial Biomass 被引量:1
8
作者 Pramod Sen Oli Tej Narayan Mandal Usha Adhikari 《Open Journal of Soil Science》 2018年第8期175-185,共11页
Soil microbial biomass is an active fraction of soil organic matter. It shows quicker response than soil organic matter to any change in the soil environment. Being an index of soil fertility, it plays a key role in t... Soil microbial biomass is an active fraction of soil organic matter. It shows quicker response than soil organic matter to any change in the soil environment. Being an index of soil fertility, it plays a key role in the decomposition of litters and fast release of available nutrients. Leaf litters of leguminous and non-leguminous species in alone and mixed form were applied as treatments in the soil to observe the changes in the magnitude of soil microbial biomass. Soil microbial biomass C and N were determined by chloroform fumigation extraction method. Increment in the concentration of microbial biomass C and N was higher in the treatments with leguminous leaf litter (497 - 571 μgCg?1, 48 - 55 μgNg?1) than the non-leguminous one (256 - 414 μgCg?1;22 - 36 μgNg?1). However, when non-leguminous litters were mixed with leguminous litters then the values increased distinctly (350 - 465 μgCg?1, 28 - 48 μgNg?1). On the basis of increment in soil microbial biomass, leaf litters of the species considered potential to improve soil nutrients are—Cassia siamea and Dalbergia sissoo from leguminous trees, Anthocephalus + Cassia and Shorea + Dalbergia from mixed form of non-leguminous and leguminous one and Eichhornia crassipes, an alien aquatic macrophyte. The leaf litters of these species can be used as source of organic matter to improve the crop yield. 展开更多
关键词 leaf litter of Leguminous Trees Non-Leguminous Trees SOIL Organic MATTER SOIL MICROBIAL BIOMASS
下载PDF
Decay stages and meteorological factors affect microbial community during leaf litter in situ decomposition 被引量:1
9
作者 Haixin Zhang Yimei Huang +4 位作者 Shaoshan An Quanchao Zeng Baorong Wang Xuejuan Bai Qian Huang 《Soil Ecology Letters》 CSCD 2023年第3期61-73,共13页
Litter microorganisms play a crucial role in the biological decomposition in forest ecosystems;however,the coupling effect of meteorological and substrate changes on it during the different stages of leaf decompositio... Litter microorganisms play a crucial role in the biological decomposition in forest ecosystems;however,the coupling effect of meteorological and substrate changes on it during the different stages of leaf decomposition in situ remains unclear.Hence,according to meteorological factors dynamics,a one-year field litter of Quercus wutaishanica in situ decomposition experiment was designed for four decay stages in a warm temperate forest.Microbial community composition was characterized using Illumina sequencing of fungal ITS and bacterial 16S genes.Bacterial(6.6)and fungal(3.6)Shannon indexes were the largest after 125 days’litter decomposition(October).The relative abundance of Acidobacteria after 342 days and Bacteroidetes after 125 days were 3 and 24 times higher than after 31 days,respectively.Some non-dominant species(bacteria:Firmicutes,Planctomycotes,and Verrucomicrobia;fungi:Chytridiomycota and Glomeromomycota)may be absent or present at different decomposition stages due to litter properties or meteorological factors.Chemoheterotrophy and aerobic-chemoheterotrophy were the dominant bacterial functional groups,and the dominant fungal functional groups were saprotrophs,pathotrophs,and symbiotrophs.Precipitation and relative humidity significantly affected bacteria.Temperature,sunlight intensity,and net radiation significantly affected fungi.Besides,among the relative contributions of changes in bacterial and fungal community structure,leaf litter properties alone explained the variation of 5.51%and 10.63%.Microbial diversity and decay stage directly affected the litter mass-loss rate,with meteorological factors(precipitation,relative humidity,air temperature,and sunlight intensity)being indirect.Our findings highlight the importance of microbial diversity for leaf litter decomposition and the influence of meteorological factors. 展开更多
关键词 leaf litter decomposition microbial community composition meteorological factors Loess Plateau Quercus wutaishanica
原文传递
Mercury in leaf litter in typical suburban and urban broadleaf forests in China 被引量:9
10
作者 Zhenchuan Niu Xiaoshan Zhang Zhangwei Wang Zhijia Ci 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第12期2042-2048,共7页
To study the role of leaf litter in the mercury (Hg) cycle in suburban broadleaf forests and the distribution of Hg in urban forests, we collected leaf litter and soil from suburban evergreen and deciduous broadleaf... To study the role of leaf litter in the mercury (Hg) cycle in suburban broadleaf forests and the distribution of Hg in urban forests, we collected leaf litter and soil from suburban evergreen and deciduous broadleaf forests and from urban forests in Beijing. The Hg concentrations in leaf litter from the suburban forests varied from 8.3 to 205.0 ng/g, with an average (avg) of (49.7 ± 36.9) ng/g. The average Hg concentration in evergreen broadleaf forest leaf litter (50.8 ± 39.4) ng/g was higher than that in deciduous broadleaf forest leaf litter (25.8 ± 10.1) ng/g. The estimated Hg fluxes of leaf litter in suburban evergreen and deciduous broadleaf forests were 179.0 and 83.7 mg/(ha·yr), respectively. The Hg concentration in organic horizons (O horizons) ((263.1 ± 237.2) ng/g) was higher than that in eluvial horizons (A horizons) ((83.9 ± 52.0) ng/g). These results indicated that leaf litterfall plays an important role in transporting atmospheric mercury to soil in suburban forests. For urban forests in Beijing, the Hg concentrations in leaf litter ranged from 8.8–119.0 (avg 28.1 ± 16.6) ng/g, with higher concentrations at urban sites than at suburban sites for each tree. The Hg concentrations in surface soil in Beijing were 32.0–25300.0 ng/g and increased from suburban sites to urban sites, with the highest value from Jingshan (JS) Park at the centre of Beijing. Therefore, the distribution of Hg in Beijing urban forests appeared to be strongly influenced by anthropogenic activities. 展开更多
关键词 MERCURY broadleaf forests leaf litter soil FLUX
原文传递
Fungal community succession on decomposing leaf litter across five phylogenetically related tree species in a subtropical forest 被引量:2
11
作者 Danushka S.Tennakoon Chang‑Hsin Kuo +4 位作者 Witoon Purahong Eleni Gentekaki Chayakorn Pumas Itthayakorn Promputtha Kevin D.Hyde 《Fungal Diversity》 SCIE 2022年第4期73-103,共31页
Fungi are an essential component of the ecosystem.They play an integral role in the decomposition of leaf litter and return nutrients to the ecosystem through nutrient cycling.They are considered as the“key players”... Fungi are an essential component of the ecosystem.They play an integral role in the decomposition of leaf litter and return nutrients to the ecosystem through nutrient cycling.They are considered as the“key players”in leaf litter decomposition,because of their ability to produce a wide range of extracellular enzymes.Time-related changes of fungal communities during leaf litter decomposition have been relatively well-investigated.However,it has not been established how the tree species,tree phylogeny,and leaf litter chemistry influence fungal communities during decomposition.Using direct observations and a culturing approach,this study compiles fungi found in freshly collected leaf litter from five phylogenetically related,native tree species in Taiwan:Celtis formosana(CF),Ficus ampelas(FA),Ficus septica(FS),Macaranga tanarius(MT),and Morus australis(MA).We investigated(i)the effects of tree species(including tree phylogeny)and leaf litter chemistry on fungal community succession,and(ii)specific patterns of fungal succession(including diversity and taxonomic community assembly)on decomposing leaf litter across the selected tree species.We hypothesized that host species and leaf litter chemistry significantly affect fungal community succession.A total of 1325 leaves(CF:275,FA:275,FS:275,MT:275 and MA:225)were collected and 236 fungal taxa were recorded(CF:48,FA:46,FS:64,MT:42 and MA:36).Tree species relationships had variable associations on the fungal communities,as even closely related tree species had strongly differing communities during decomposition.A high number of species were unique to a single tree species and may indicate‘host-specificity’to a particular leaf litter.The overlap of microfungal species in pair wise comparisons of tree species was low(7–16%),and only 1–2%of microfungal species were observed in leaves of all tree species.The percentage of occurrences of fungal communities using Hierarchical Cluster Analyses(HCA)showed that there were at least four succession stages in each tree species during decomposition.Fungal diversity increased at the beginning of each tree species leaf decay,reached peaks,and declined at the final stages.Overall,our findings demonstrate that tree species and leaf litter chemistry are important variables in determining fungal diversity and community composition in leaf litter.Referring to the establishment of fungal discoveries from this experimental design,two new families,two new genera,40 new species and 56 new host records were reported.This study provides a host-fungus database for future studies on these hosts and increases the knowledge of fungal diversity in leaf litter. 展开更多
关键词 Fungal diversity ECOLOGY leaf litter decomposition Percentage of occurrences TAXONOMY
原文传递
Effects of multiple but low pesticide loads on aquatic fungal communities colonizing leaf litter 被引量:1
12
作者 Anne Talk Susanne Kublik +5 位作者 Marie Uksa Marion Engel Rüdiger Berghahn Gerhard Welzl Michael Schloter Silvia Mohr 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第8期116-125,共10页
In the first tier risk assessment(RA) of pesticides, risk for aquatic communities is estimated by using results from standard laboratory tests with algae, daphnids and fish for single pesticides such as herbicides, ... In the first tier risk assessment(RA) of pesticides, risk for aquatic communities is estimated by using results from standard laboratory tests with algae, daphnids and fish for single pesticides such as herbicides, fungicides, and insecticides. However, fungi as key organisms for nutrient cycling in ecosystems as well as multiple pesticide applications are not considered in the RA. In this study, the effects of multiple low pesticide pulses using regulatory acceptable concentrations(RACs) on the dynamics of non-target aquatic fungi were investigated in a study using pond mesocosm. For that, fungi colonizing black alder(Alnus glutinosa) leaves were exposed to multiple, low pulses of 11 different pesticides over a period of 60 days using a real farmer's pesticide application protocol for apple cropping.Four pond mesocosms served as treatments and 4 as controls. The composition of fungal communities colonizing the litter material was analyzed using a molecular fingerprinting approach based on the terminal Restriction Fragment Length Polymorphism(t-RFLP) of the fungal Internal Transcribed Spacer(ITS) region of the ribonucleic acid(RNA) gene(s). Our data indicated a clear fluctuation of fungal communities based on the degree of leaf litter degradation. However significant effects of the applied spraying sequence were not observed. Consequently also degradation rates of the litter material were not affected by the treatments. Our results indicate that the nutrient rich environment of the leaf litter material gave fungal communities the possibility to express genes that induce tolerance against the applied pesticides. Thus our data may not be transferred to other fresh water habitats with lower nutrient availability. 展开更多
关键词 Mixture toxicity Pesticides Regulatory acceptable concentration Fungal community structure leaf litter degradation
原文传递
Effects of seagrass leaf litter decomposition on sediment organic carbon composition and the key transformation processes
13
作者 LIU SongLin JIANG ZhiJian +5 位作者 DENG YiQin WU YunChao ZHAO ChunYu ZHANG JingPing SHEN Yuan HUANG XiaoPing 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第12期2108-2117,共10页
Seagrass leaf litters are an important source of sediment organic carbon(SOC). However, the mechanisms of seagrass leaf litter decomposition influencing SOC composition and the key transformation processes remain unkn... Seagrass leaf litters are an important source of sediment organic carbon(SOC). However, the mechanisms of seagrass leaf litter decomposition influencing SOC composition and the key transformation processes remain unknown. We performed a laboratory chamber experiment to compare the labile organic carbon(OC) composition and the enzyme activities governing SOC transformation between the seagrass group(seagrass leaf litter addition) and the control group. The results showed that the seagrass leaf litter decomposition significantly elevated the salt-extractable carbon(SEC) content and the SEC/SOC. Additionally,the levels of invertase, polyphenol oxidase, and cellulase in the seagrass leaf litters addition group were generally higher than in the control group, which could elevate recalcitrant OC decomposition. Following 24 days incubation, addition of seagrass leaf litter increased the amount of CO_2 released, but decreased the SOC content. Therefore, seagrass leaf litter decomposition leached abundant dissolved OC, which enhanced the activity and transformation of SOC. 展开更多
关键词 Seagrass leaf litter Sediment organic carbon COMPOSITION Enzyme activities
原文传递
东北槭属植物凋落叶对东北槭生长的影响及其化感作用初探
14
作者 杨轶华 孙波 +2 位作者 曲线 张洪运 李虹 《国土与自然资源研究》 2024年第4期84-87,共4页
为解决东北槭小苗生长缓慢成材周期长,寻求促进其生长的途径,采用温室培养的方法,以一年生东北槭小苗为受体,通过高生长量、叶长、叶宽、冠幅、地上鲜重、地下鲜重及叶绿素含量、POD活性的测定,研究茶条槭、元宝槭凋落叶及假色槭和东北... 为解决东北槭小苗生长缓慢成材周期长,寻求促进其生长的途径,采用温室培养的方法,以一年生东北槭小苗为受体,通过高生长量、叶长、叶宽、冠幅、地上鲜重、地下鲜重及叶绿素含量、POD活性的测定,研究茶条槭、元宝槭凋落叶及假色槭和东北槭混合凋落叶粉碎物对东北槭小苗生长的影响。结果表明,茶条槭凋落叶对东北槭表现出了“低促高抑”的化感作用,当添加量最大120g/10kg时,小苗受到抑制。元宝槭凋落叶添加量最大时各指标促进作用显著,东北槭高生长量增加了1倍。混合凋落叶对东北槭生长无明显作用。 展开更多
关键词 槭属 凋落叶 东北槭 化感作用 生长
下载PDF
云南乌蒙山国家级自然保护区珙桐林生态化学计量特征
15
作者 张燕 王平 +2 位作者 孟月 李伟 尹正吉 《甘肃农业大学学报》 CAS CSCD 北大核心 2024年第1期243-251,共9页
【目的】探究国家Ⅰ级珍稀濒危植物珙桐生态化学计量特征,揭示珙桐林生态系统养分元素状况和生长限制因子。【方法】在云南乌蒙山国家级自然保护区不同海拔段设置4个样地,编号分别为Ⅰ、Ⅱ、Ⅲ、Ⅳ,利用单因素方差分析及多重比较等方法... 【目的】探究国家Ⅰ级珍稀濒危植物珙桐生态化学计量特征,揭示珙桐林生态系统养分元素状况和生长限制因子。【方法】在云南乌蒙山国家级自然保护区不同海拔段设置4个样地,编号分别为Ⅰ、Ⅱ、Ⅲ、Ⅳ,利用单因素方差分析及多重比较等方法研究珙桐林叶片-凋落物-土壤3种组分C、N、P含量及其比值的差异性、相关性,用冗余分析方法探究土壤化学计量特征的响应因子。【结果】珙桐叶片C、N、P平均含量分别为520.97、22.73、1.43 g/kg,凋落物C、N、P平均含量分别为459.87、10.96、1.35 g/kg,土壤C、N、P平均含量分别为74.81、7.94、0.79 g/kg,叶片、凋落物、土壤C、N、P平均含量表现为叶片>凋落物>土壤。不同样地同一组分间土壤C、N、P含量差异显著,表现为Ⅳ>Ⅲ>Ⅱ>Ⅰ(Ⅰ:58.47±1.88、5.73±0.41、0.06±0.02 g/kg;Ⅱ:64.45±2.29、6.82±0.19、0.61±0.08 g/kg;Ⅲ:75.94±1.32、7.88±0.16、1.11±0.06 g/kg;Ⅳ:100.39±1.24、11.32±0.25、1.36±0.10 g/kg),叶片、凋落物差异不显著;同一样地不同组分间C含量差异显著,表现为叶片>凋落物>土壤,N、P含量差异不显著;不同样地同一组分、同一样地不同组分间C∶N、C∶P、N∶P存在显著差异。叶片、凋落物、土壤C、N、P含量及比值间相关性显著;海拔、非毛管孔隙度和坡度、毛管孔隙度、粉砂粒含量是影响土壤养分含量的关键环境因子。【结论】云南乌蒙山国家级自然保护区珙桐林不同海拔样地间土壤C、N、P含量及其比值存在显著差异,叶片、凋落物差异不明显,根据生态化学计量特征表明样地Ⅳ珙桐生长受P元素限制,海拔、非毛管孔隙度、坡度、毛管孔隙度、粉砂粒含量是影响珙桐林土壤养分循环的关键环境因子。 展开更多
关键词 珙桐 生态化学计量 叶片-枯落物-土壤 环境因子 乌蒙山国家级自然保护区
下载PDF
喀斯特常绿落叶阔叶混交林凋落叶养分含量时空分布特征
16
作者 淦江 黄国勤 +6 位作者 杜虎 宋同清 曾馥平 张立进 彭晚霞 谭卫宁 黄静 《生态学报》 CAS CSCD 北大核心 2024年第2期733-744,共12页
森林生态系统中凋落物养分含量通常具有明显的时空异质性,为探究喀斯特常绿落叶阔叶混交林凋落叶养分含量的时空分布特征及其影响因素,以广西木论喀斯特常绿落叶阔叶混交林25hm2动态监测样地内151个凋落物收集器所收集的凋落叶为研究对... 森林生态系统中凋落物养分含量通常具有明显的时空异质性,为探究喀斯特常绿落叶阔叶混交林凋落叶养分含量的时空分布特征及其影响因素,以广西木论喀斯特常绿落叶阔叶混交林25hm2动态监测样地内151个凋落物收集器所收集的凋落叶为研究对象,选取连续12个月的凋落叶进行元素含量分析。结果显示:该森林群落凋落叶元素含量大小顺序为碳(C)>钙(Ca)>氮(N)>镁(Mg)>钾(K)>硫(S)>磷(P),分别介于471.85—496.33、20.27—28.29、17.34—23.10、2.79—5.49、1.80—4.38、1.82—2.22、0.96—1.21g/kg之间,呈现高Ca、Mg,低P、K的分布规律,并且随时间出现明显波动,其中C、N、P、S和Ca元素均在4月出现较大值,而K、Mg则在1月出现峰值。生物因子在5m和10m邻域范围内对凋落叶含量的影响基本一致,但10m尺度上地形因子和土壤因子对凋落叶元素含量的影响更为明显。10m邻域范围内生物和非生物因子对凋落叶P元素的随机森林累积解释率最高,达80.27%,C元素累积解释率最低,仅10.49%,其中海拔和坡度对凋落叶C、N、P、S、K、Ca和Mg含量均有强烈影响,岩石出露率和土壤铁(Fe)含量也会在一定程度上对凋落叶元素含量产生较大影响。综上所述,喀斯特常绿落叶阔叶混交林不同月际间凋落叶养分含量存在显著差异,10m尺度上海拔和坡度是凋落叶养分含量产生空间变异的主要原因。 展开更多
关键词 凋落物 养分 时空异质性 喀斯特 常绿落叶阔叶混交林
下载PDF
香樟凋落物对杂草萌发与生长的化感作用
17
作者 刘巧丽 陈彩慧 +4 位作者 钟永达 余发新 刘腾云 肖亮 吴照祥 《江西农业大学学报》 CAS CSCD 北大核心 2024年第1期128-138,共11页
【目的】杂草是农业生产中的主要危害之一,化学除草剂导致的环境与健康问题日益突出,利用化感作用防治杂草已成为一种新的趋势。【方法】研究采用培养实验,探究添加不同量(质量分数3%、6%、9%、12%)的香樟含油叶粉和脱油叶粉对田园土种... 【目的】杂草是农业生产中的主要危害之一,化学除草剂导致的环境与健康问题日益突出,利用化感作用防治杂草已成为一种新的趋势。【方法】研究采用培养实验,探究添加不同量(质量分数3%、6%、9%、12%)的香樟含油叶粉和脱油叶粉对田园土种子库杂草萌发与生长的影响。【结果】(1)两种叶粉均能显著抑制杂草的萌发与生长,具有明显的“浓度效应”,且能延迟除稗草外其他禾本科杂草的萌发时间8 d以上。(2)根据综合化感效应指数,当添加量≤6%时,香樟脱油叶粉对杂草的抑制效果要强于含油叶粉;添加量≥9%时,香樟含油叶粉的抑制效果要强于脱油叶粉。施加同一叶粉时,综合化感效应指数随叶粉量的增加而增强。(3)两种叶粉均能显著提升土壤的肥力,增加速效钾、速效磷、速效氮和有机质含量。(4)相关性分析结果表明,土壤的速效钾含量与杂草的萌发、生长之间有极显著负相关关系。【结论】两种香樟叶粉均可以抑制土壤种子库杂草萌发和生长,且当浓度≤6%时,脱油叶粉的效果更佳;当浓度≥9%时,含油叶粉抑草效果更佳。 展开更多
关键词 香樟 凋落叶 杂草 土壤肥力 化感效应
下载PDF
亚热带树种在未成林造林地的凋落物量和周转与叶片性状的关系
18
作者 贾辉 朱敏 +5 位作者 余再鹏 万晓华 傅彦榕 王思荣 邹秉章 黄志群 《林业科学》 EI CAS CSCD 北大核心 2024年第1期12-18,共7页
【目的】测定亚热带树种的叶片功能性状、凋落叶质量、凋落物量和周转期,揭示叶片性状对凋落物量和周转的影响,为杉木采伐后如何选择造林树种以改善土壤肥力提供科学依据。【方法】选取在二代杉木林采伐迹地营造的17种亚热带树种,测定其... 【目的】测定亚热带树种的叶片功能性状、凋落叶质量、凋落物量和周转期,揭示叶片性状对凋落物量和周转的影响,为杉木采伐后如何选择造林树种以改善土壤肥力提供科学依据。【方法】选取在二代杉木林采伐迹地营造的17种亚热带树种,测定其在3年生未成林造林地的凋落物量和周转期,同时测定各树种的叶片功能性状(比叶面积、干物质含量、氮含量等)和凋落叶质量(碳氮比、单宁含量、可溶性糖含量等),建立叶片性状与凋落物量和周转期的回归关系。【结果】17种树种中,米老排凋落物量最高(6.67 t·hm^(-2)a^(-1)),杉木凋落物量最低(0 t·hm^(-2)a^(-1));江南桤木凋落叶周转期最短(0.09年);深山含笑凋落叶周转期最长(1.09年)。凋落物量随比叶面积增加而增加,随叶氮含量增加而降低;凋落叶周转期随凋落叶碳氮比和单宁含量增加而增加,随凋落叶最大持水率增加而降低。【结论】在亚热带未成林造林地中,凋落物量受比叶面积和叶氮含量的影响,凋落叶周转期受凋落叶碳氮比、单宁含量和最大持水率的影响;杉木在未成林造林地阶段的凋落物归还量极少。经营亚热带人工林时,要考虑种植比叶面积和凋落叶最大持水能力较高、凋落叶单宁含量和碳氮比较低的树种,以提高林地凋落物归还量和周转速率,改善退化人工林的土壤肥力。 展开更多
关键词 比叶面积 叶氮含量 凋落叶单宁含量 凋落叶最大持水能力 杉木
下载PDF
两种乔木凋落叶浸提液处理对地毯草土壤酶活性及其化学计量比的影响
19
作者 黄琳曦 陈倩 +4 位作者 张先言 闫顺 杨云 辛培尧 汪琼 《草业学报》 CSCD 北大核心 2024年第4期35-46,共12页
乔木搭配人工草坪是园林绿化中常见的植物配置方案,但乔木凋落物可能会影响林下草坪草的生长。为探究两种乔木栾树、樱树凋落物对地毯草草坪的影响,本研究将栾树、樱树凋落叶分别制成10、20、40 g·L^(-1)质量浓度的水浸提液,通过... 乔木搭配人工草坪是园林绿化中常见的植物配置方案,但乔木凋落物可能会影响林下草坪草的生长。为探究两种乔木栾树、樱树凋落物对地毯草草坪的影响,本研究将栾树、樱树凋落叶分别制成10、20、40 g·L^(-1)质量浓度的水浸提液,通过盆栽试验分析两种凋落叶浸提液处理下地毯草根际土壤水解酶活性及其化学计量比的变化,初步探讨林下植被管理对地毯草土壤质量的影响。结果表明:1)在不同质量浓度的栾树凋落叶浸提液处理下,地毯草根际土壤β-1,4-葡萄糖苷酶(BG)、β-N-乙酰氨基葡萄糖苷酶(NAG)、酸性磷酸酶(PHOS)活性均呈先增后减的变化趋势,木糖聚酶(XYL)则呈先减少后增加,最后减少的变化趋势,而在不同质量浓度的樱树凋落叶浸提液处理下,地毯草根际土壤β-1,4-葡萄糖苷酶、β-N-乙酰氨基葡萄糖苷酶、木糖聚酶活性则表现为先减后增的变化规律,酸性磷酸酶随质量浓度的增加呈递减的变化规律;2)相关性分析表明,N、P获取酶活性与土壤有机碳(SOC)含量呈显著正相关,酶C/N、酶C/P与总氮(TN)、总磷(TP)含量呈显著负相关,酶N/P与SOC含量呈显著负相关。矢量模型分析发现凋落物浸提液处理下地毯草根际土壤微生物呈P养分限制特征,樱树凋落叶浸提液处理能缓解微生物C、P限制;3)冗余分析进一步揭示了栾树和樱树凋落叶浸提液处理下地毯草根际土壤SOC、TP含量和土壤C/P、土壤含水量(SWC)、pH是影响土壤酶活性及其化学计量比的主要因子。因此,在人工草坪日常管理中应适时添加栾树、樱树凋落叶,在提高土壤微生物酶活性的同时缓解了地毯草生长中的碳和磷限制。 展开更多
关键词 凋落叶 土壤酶活性 化学计量比 养分限制
下载PDF
Impacts of mixed litter decomposition from Robinia pseudoacacia and other tree species on C loss and nutrient release in the Loess Plateau of China 被引量:12
20
作者 Xiaoxi Zhang Zengwen Liu +4 位作者 Bochao Zhu Yuanhao Bing Nhu Trung Luc Liangzhen Du Zhenhua Zhu 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第3期525-532,共8页
The productivity of Robinia pseudoacacia(R.p.) pure forest usually declines at the late growth stage,and reforming it into mixed forests could be a promising way to resolve this problem. When choosing a suitable tre... The productivity of Robinia pseudoacacia(R.p.) pure forest usually declines at the late growth stage,and reforming it into mixed forests could be a promising way to resolve this problem. When choosing a suitable tree species that can be mixed with R.p., the interspecific relationship is an important issue. Therefore, we gathered the autumn litter fall from R.p. and 10 other species from the Loess Plateau of China were mixed in dual species litterbags(R.p.+each other species) and buried them in soil for a 345 days lab decay incubation. We measured the litter mass loss and nutrient contents to determine whether the nutrient release was affected by mixed species litter decomposition. The impacts of mixed litter decomposition on macro-elements release were more obvious than on micro-elements. The litters with similar substrate quality might show variable impacts on nutrients release in mixed decomposition. The C loss and release of nutrient was improved by descending order when R.p. litter was mixed with Hippophae rhamnoides, Ulmus pumila, Populus simonii, Larix principis-rupprechtii and Quercus liaotungensis(Q.l.). But, except for Q.l., only the other species were recommended as suitable mix-plants for R.p. since promoting a high turnover of the nutrient in the litter compartment and a rapid availability for tree. 展开更多
关键词 Robinia pseudoacacia leaf litter Mixeddecomposition Nutrient release
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部