Carpinus tschonoskii Maxim.exhibits rich leaf phenotypic variation and various leaf shapes,but few studies show why leaf phenotypic traits have such a large variation.Basic morphological markers may provide guidance f...Carpinus tschonoskii Maxim.exhibits rich leaf phenotypic variation and various leaf shapes,but few studies show why leaf phenotypic traits have such a large variation.Basic morphological markers may provide guidance for studying plant genetic variation and species protection and utilization.To study leaf phenotypic variations and the relationship between variation characteristics and climatic and geographical factors,phenotypic traits among natural populations were investigated.Results revealed that leaf phenotypes varied significantly among and within populations.Some populations had higher phenotypic diversity,while others had lower phenotypic diversity.Among the phenotypic traits,leaf area and petiole length had the most variation.Leaf index and primary lateral veins were the most stable phenotypes,which may be important reference indexes for phenotype identification in field investigations.There was a strong consistency between leaf phenotypic traits and geographical location.Plants in high latitudes tend to have longer leaves,and plants in low temperatures tend to have longer leaves and larger leaf perimeter.In addition,plants in areas with less rainfall have longer petioles.The 13 populations of C.tschonoskii can be divided into four branches by cluster analysis,and the results show a good relationship with the geographical location of each population.Additionally,some populations geographically isolated also had unique leaf phenotypes.展开更多
To analyze the degree and pattern of phenotypic variation in leaves of Tetracentron sinense Oliv from the perspective of genetic and environmental adaptation and thus contribute to effective evidence-based conservatio...To analyze the degree and pattern of phenotypic variation in leaves of Tetracentron sinense Oliv from the perspective of genetic and environmental adaptation and thus contribute to effective evidence-based conservation and management strategies for germplasm resources,we measured 17 morphological and epidermal micromorphological leaf traits from 24 natural populations of T.sinense.Nested analysis of variance,multiple comparison,principal component analysis(PCA),cluster analysis,and correlation analysis were used to explore phenotypic leaf variation among and within populations and potential correlations with geographic and environmental factors.There were significant differences in 17 leaf phenotypic traits among and within populations.The mean phenotypic differentiation coefficient of the 17 traits was 56.34%,and the variation among populations(36.4%)was greater than that within populations(27.2%).The coefficient of variation(CV)of each trait ranged from 4.6 to 23.8%,and the mean was 11.8%.Phenotypic variation of leaves was related to environmental factors such as average annual sunshine hours,average July temperature,and average annual rainfall.The variation changed along gradients of longitude,latitude,and altitude.The PCA clustered the 24 natural populations into four groups.Our study suggests that phenotypic variation in T.sinense occurred primarily among populations,with moderate levels of phenotypic differentiation among populations and low levels of phenotypic variation within populations.The plant’s poor adaptability to the environment is likely an important contributor to its endangerment.Accordingly,conservation strategies are proposed to protect and manage the natural populations of T.sinense.展开更多
基金supported by the Forestry and Grassland Science and Technology Achievements National Promotion Project of the National Forestry and Grassland Administration (2019133119)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX22_1104)the National Natural Science Foundation of China (31770752)。
文摘Carpinus tschonoskii Maxim.exhibits rich leaf phenotypic variation and various leaf shapes,but few studies show why leaf phenotypic traits have such a large variation.Basic morphological markers may provide guidance for studying plant genetic variation and species protection and utilization.To study leaf phenotypic variations and the relationship between variation characteristics and climatic and geographical factors,phenotypic traits among natural populations were investigated.Results revealed that leaf phenotypes varied significantly among and within populations.Some populations had higher phenotypic diversity,while others had lower phenotypic diversity.Among the phenotypic traits,leaf area and petiole length had the most variation.Leaf index and primary lateral veins were the most stable phenotypes,which may be important reference indexes for phenotype identification in field investigations.There was a strong consistency between leaf phenotypic traits and geographical location.Plants in high latitudes tend to have longer leaves,and plants in low temperatures tend to have longer leaves and larger leaf perimeter.In addition,plants in areas with less rainfall have longer petioles.The 13 populations of C.tschonoskii can be divided into four branches by cluster analysis,and the results show a good relationship with the geographical location of each population.Additionally,some populations geographically isolated also had unique leaf phenotypes.
基金funded by the Sichuan Science and Technology Program,Sichuan Province,China(No.2017JY0164)the Special Fund for the Fourth General Survey of Chinese Medicine Resources in China(No.2018PC001)+1 种基金Meritocracy Research Funds of China West Normal University(No.17YC325)the Fundamental Research Funds of China West Normal University(No.18B026).
文摘To analyze the degree and pattern of phenotypic variation in leaves of Tetracentron sinense Oliv from the perspective of genetic and environmental adaptation and thus contribute to effective evidence-based conservation and management strategies for germplasm resources,we measured 17 morphological and epidermal micromorphological leaf traits from 24 natural populations of T.sinense.Nested analysis of variance,multiple comparison,principal component analysis(PCA),cluster analysis,and correlation analysis were used to explore phenotypic leaf variation among and within populations and potential correlations with geographic and environmental factors.There were significant differences in 17 leaf phenotypic traits among and within populations.The mean phenotypic differentiation coefficient of the 17 traits was 56.34%,and the variation among populations(36.4%)was greater than that within populations(27.2%).The coefficient of variation(CV)of each trait ranged from 4.6 to 23.8%,and the mean was 11.8%.Phenotypic variation of leaves was related to environmental factors such as average annual sunshine hours,average July temperature,and average annual rainfall.The variation changed along gradients of longitude,latitude,and altitude.The PCA clustered the 24 natural populations into four groups.Our study suggests that phenotypic variation in T.sinense occurred primarily among populations,with moderate levels of phenotypic differentiation among populations and low levels of phenotypic variation within populations.The plant’s poor adaptability to the environment is likely an important contributor to its endangerment.Accordingly,conservation strategies are proposed to protect and manage the natural populations of T.sinense.