期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Leaf recognition using BP-RBF hybrid neural network 被引量:1
1
作者 Xin Yang Haiming Ni +3 位作者 Jingkui Li Jialuo Lv Hongbo Mu Dawei Qi 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第2期579-589,共11页
Plant recognition has great potential in forestry research and management.A new method combined back propagation neural network and radial basis function neural network to identify tree species using a few features an... Plant recognition has great potential in forestry research and management.A new method combined back propagation neural network and radial basis function neural network to identify tree species using a few features and samples.The process was carried out in three steps:image pretreatment,feature extraction,and leaf recognition.In the image pretreatment processing,an image segmentation method based on hue,saturation and value color space and connected component labeling was presented,which can obtain the complete leaf image without veins and back-ground.The BP-RBF hybrid neural network was used to test the influence of shape and texture on species recogni-tion.The recognition accuracy of different classifiers was used to compare classification performance.The accuracy of the BP-RBF hybrid neural network using nine dimensional features was 96.2%,highest among all the classifiers. 展开更多
关键词 leaf recognition BP-RBF neural network Image processing Feature extraction Machine learning
下载PDF
Crop Leaf Disease Recognition Network Based on Brain Parallel Interaction Mechanism
2
作者 YUAN Hui HAO Kuangrong WEI Bing 《Journal of Donghua University(English Edition)》 CAS 2022年第2期146-155,共10页
In the actual complex environment,the recognition accuracy of crop leaf disease is often not high.Inspired by the brain parallel interaction mechanism,a two-stream parallel interactive convolutional neural network(TSP... In the actual complex environment,the recognition accuracy of crop leaf disease is often not high.Inspired by the brain parallel interaction mechanism,a two-stream parallel interactive convolutional neural network(TSPI-CNN)is proposed to improve the recognition accuracy.TSPI-CNN includes a two-stream parallel network(TSP-Net)and a parallel interactive network(PI-Net).TSP-Net simulates the ventral and dorsal stream.PI-Net simulates the interaction between two pathways in the process of human brain visual information transmission.A large number of experiments shows that the proposed TSPI-CNN performs well on MK-D2,PlantVillage,Apple-3 leaf,and Cassava leaf datasets.Furthermore,the effect of numbers of interactions on the recognition performance of TSPI-CNN is discussed.The experimental results show that as the number of interactions increases,the recognition accuracy of the network also increases.Finally,the network is visualized to show the working mechanism of the network and provide enlightenment for future research. 展开更多
关键词 brain parallel interaction mechanism recognition accuracy convolutional neural network crop leaf disease recognition
下载PDF
Apple leaf disease identification using genetic algorithm and correlation based feature selection method 被引量:17
3
作者 Zhang Chuanlei Zhang Shanwen +2 位作者 Yang Jucheng Shi Yancui Chen Jia 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2017年第2期74-83,共10页
Apple leaf disease is one of the main factors to constrain the apple production and quality.It takes a long time to detect the diseases by using the traditional diagnostic approach,thus farmers often miss the best tim... Apple leaf disease is one of the main factors to constrain the apple production and quality.It takes a long time to detect the diseases by using the traditional diagnostic approach,thus farmers often miss the best time to prevent and treat the diseases.Apple leaf disease recognition based on leaf image is an essential research topic in the field of computer vision,where the key task is to find an effective way to represent the diseased leaf images.In this research,based on image processing techniques and pattern recognition methods,an apple leaf disease recognition method was proposed.A color transformation structure for the input RGB(Red,Green and Blue)image was designed firstly and then RGB model was converted to HSI(Hue,Saturation and Intensity),YUV and gray models.The background was removed based on a specific threshold value,and then the disease spot image was segmented with region growing algorithm(RGA).Thirty-eight classifying features of color,texture and shape were extracted from each spot image.To reduce the dimensionality of the feature space and improve the accuracy of the apple leaf disease identification,the most valuable features were selected by combining genetic algorithm(GA)and correlation based feature selection(CFS).Finally,the diseases were recognized by SVM classifier.In the proposed method,the selected feature subset was globally optimum.The experimental results of more than 90%correct identification rate on the apple diseased leaf image database which contains 90 disease images for there kinds of apple leaf diseases,powdery mildew,mosaic and rust,demonstrate that the proposed method is feasible and effective. 展开更多
关键词 apple leaf disease diseased leaf recognition region growing algorithm(RGA) genetic algorithm and correlation based feature selection(GA-CFS)
原文传递
Recognition algorithm for plant leaves based on adaptive supervised locally linear embedding
4
作者 Yan Qing Liang Dong +1 位作者 Zhang Dongyan Wang Xiu 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2013年第3期52-57,共6页
Locally linear embedding(LLE)algorithm has a distinct deficiency in practical application.It requires users to select the neighborhood parameter,k,which denotes the number of nearest neighbors.A new adaptive method is... Locally linear embedding(LLE)algorithm has a distinct deficiency in practical application.It requires users to select the neighborhood parameter,k,which denotes the number of nearest neighbors.A new adaptive method is presented based on supervised LLE in this article.A similarity measure is formed by utilizing the Fisher projection distance,and then it is used as a threshold to select k.Different samples will produce different k adaptively according to the density of the data distribution.The method is applied to classify plant leaves.The experimental results show that the average classification rate of this new method is up to 92.4%,which is much better than the results from the traditional LLE and supervised LLE. 展开更多
关键词 supervised locally linear embedding manifold learning Fisher projection adaptive neighbors leaf recognition Precision Agriculture
原文传递
A new approach to learning and recognizing leaf diseases from individual lesions using convolutional neural networks
5
作者 Lawrence C.Ngugi Moataz Abdelwahab Mohammed Abo-Zahhad 《Information Processing in Agriculture》 EI CSCD 2023年第1期11-27,共17页
Leaf disease recognition using image processing and deep learning techniques is currently a vibrant research area.Most studies have focused on recognizing diseases from images of whole leaves.This approach limits the ... Leaf disease recognition using image processing and deep learning techniques is currently a vibrant research area.Most studies have focused on recognizing diseases from images of whole leaves.This approach limits the resulting models’ability to estimate leaf disease severity or identify multiple anomalies occurring on the same leaf.Recent studies have demonstrated that classifying leaf diseases based on individual lesions greatly enhances disease recognition accuracy.In those studies,however,the lesions were laboriously cropped by hand.This study proposes a semi-automatic algorithm that facilitates the fast and efficient preparation of datasets of individual lesions and leaf image pixel maps to overcome this problem.These datasets were then used to train and test lesion classifier and semantic segmentation Convolutional Neural Network(CNN)models,respectively.We report that GoogLeNet’s disease recognition accuracy improved by more than 15%when diseases were recognized from lesion images compared to when disease recognition was done using images of whole leaves.A CNN model which performs semantic segmentation of both the leaf and lesions in one pass is also proposed in this paper.The proposed KijaniNet model achieved state-of-the-art segmentation performance in terms of mean Intersection over Union(mIoU)score of 0.8448 and 0.6257 for the leaf and lesion pixel classes,respectively.In terms of mean boundary F1 score,the KijaniNet model attained 0.8241 and 0.7855 for the two pixel classes,respectively.Lastly,a fully automatic algorithm for leaf disease recognition from individual lesions is proposed.The algorithm employs the semantic segmentation network cascaded to a GoogLeNet classifier for lesion-wise disease recognition.The proposed fully automatic algorithm outperforms competing methods in terms of its superior segmentation and classification performance despite being trained on a small dataset. 展开更多
关键词 Deep learning Precision agriculture leaf disease recognition Complex background removal leaf image segmentation Lesion classification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部