Plant recognition has great potential in forestry research and management.A new method combined back propagation neural network and radial basis function neural network to identify tree species using a few features an...Plant recognition has great potential in forestry research and management.A new method combined back propagation neural network and radial basis function neural network to identify tree species using a few features and samples.The process was carried out in three steps:image pretreatment,feature extraction,and leaf recognition.In the image pretreatment processing,an image segmentation method based on hue,saturation and value color space and connected component labeling was presented,which can obtain the complete leaf image without veins and back-ground.The BP-RBF hybrid neural network was used to test the influence of shape and texture on species recogni-tion.The recognition accuracy of different classifiers was used to compare classification performance.The accuracy of the BP-RBF hybrid neural network using nine dimensional features was 96.2%,highest among all the classifiers.展开更多
In the actual complex environment,the recognition accuracy of crop leaf disease is often not high.Inspired by the brain parallel interaction mechanism,a two-stream parallel interactive convolutional neural network(TSP...In the actual complex environment,the recognition accuracy of crop leaf disease is often not high.Inspired by the brain parallel interaction mechanism,a two-stream parallel interactive convolutional neural network(TSPI-CNN)is proposed to improve the recognition accuracy.TSPI-CNN includes a two-stream parallel network(TSP-Net)and a parallel interactive network(PI-Net).TSP-Net simulates the ventral and dorsal stream.PI-Net simulates the interaction between two pathways in the process of human brain visual information transmission.A large number of experiments shows that the proposed TSPI-CNN performs well on MK-D2,PlantVillage,Apple-3 leaf,and Cassava leaf datasets.Furthermore,the effect of numbers of interactions on the recognition performance of TSPI-CNN is discussed.The experimental results show that as the number of interactions increases,the recognition accuracy of the network also increases.Finally,the network is visualized to show the working mechanism of the network and provide enlightenment for future research.展开更多
Apple leaf disease is one of the main factors to constrain the apple production and quality.It takes a long time to detect the diseases by using the traditional diagnostic approach,thus farmers often miss the best tim...Apple leaf disease is one of the main factors to constrain the apple production and quality.It takes a long time to detect the diseases by using the traditional diagnostic approach,thus farmers often miss the best time to prevent and treat the diseases.Apple leaf disease recognition based on leaf image is an essential research topic in the field of computer vision,where the key task is to find an effective way to represent the diseased leaf images.In this research,based on image processing techniques and pattern recognition methods,an apple leaf disease recognition method was proposed.A color transformation structure for the input RGB(Red,Green and Blue)image was designed firstly and then RGB model was converted to HSI(Hue,Saturation and Intensity),YUV and gray models.The background was removed based on a specific threshold value,and then the disease spot image was segmented with region growing algorithm(RGA).Thirty-eight classifying features of color,texture and shape were extracted from each spot image.To reduce the dimensionality of the feature space and improve the accuracy of the apple leaf disease identification,the most valuable features were selected by combining genetic algorithm(GA)and correlation based feature selection(CFS).Finally,the diseases were recognized by SVM classifier.In the proposed method,the selected feature subset was globally optimum.The experimental results of more than 90%correct identification rate on the apple diseased leaf image database which contains 90 disease images for there kinds of apple leaf diseases,powdery mildew,mosaic and rust,demonstrate that the proposed method is feasible and effective.展开更多
Locally linear embedding(LLE)algorithm has a distinct deficiency in practical application.It requires users to select the neighborhood parameter,k,which denotes the number of nearest neighbors.A new adaptive method is...Locally linear embedding(LLE)algorithm has a distinct deficiency in practical application.It requires users to select the neighborhood parameter,k,which denotes the number of nearest neighbors.A new adaptive method is presented based on supervised LLE in this article.A similarity measure is formed by utilizing the Fisher projection distance,and then it is used as a threshold to select k.Different samples will produce different k adaptively according to the density of the data distribution.The method is applied to classify plant leaves.The experimental results show that the average classification rate of this new method is up to 92.4%,which is much better than the results from the traditional LLE and supervised LLE.展开更多
Leaf disease recognition using image processing and deep learning techniques is currently a vibrant research area.Most studies have focused on recognizing diseases from images of whole leaves.This approach limits the ...Leaf disease recognition using image processing and deep learning techniques is currently a vibrant research area.Most studies have focused on recognizing diseases from images of whole leaves.This approach limits the resulting models’ability to estimate leaf disease severity or identify multiple anomalies occurring on the same leaf.Recent studies have demonstrated that classifying leaf diseases based on individual lesions greatly enhances disease recognition accuracy.In those studies,however,the lesions were laboriously cropped by hand.This study proposes a semi-automatic algorithm that facilitates the fast and efficient preparation of datasets of individual lesions and leaf image pixel maps to overcome this problem.These datasets were then used to train and test lesion classifier and semantic segmentation Convolutional Neural Network(CNN)models,respectively.We report that GoogLeNet’s disease recognition accuracy improved by more than 15%when diseases were recognized from lesion images compared to when disease recognition was done using images of whole leaves.A CNN model which performs semantic segmentation of both the leaf and lesions in one pass is also proposed in this paper.The proposed KijaniNet model achieved state-of-the-art segmentation performance in terms of mean Intersection over Union(mIoU)score of 0.8448 and 0.6257 for the leaf and lesion pixel classes,respectively.In terms of mean boundary F1 score,the KijaniNet model attained 0.8241 and 0.7855 for the two pixel classes,respectively.Lastly,a fully automatic algorithm for leaf disease recognition from individual lesions is proposed.The algorithm employs the semantic segmentation network cascaded to a GoogLeNet classifier for lesion-wise disease recognition.The proposed fully automatic algorithm outperforms competing methods in terms of its superior segmentation and classification performance despite being trained on a small dataset.展开更多
基金This work is supported by the Fundamental Research Funds for the Central Universities(No.2572020BC07)the Project of National Science Foundation of China(No.31570712).
文摘Plant recognition has great potential in forestry research and management.A new method combined back propagation neural network and radial basis function neural network to identify tree species using a few features and samples.The process was carried out in three steps:image pretreatment,feature extraction,and leaf recognition.In the image pretreatment processing,an image segmentation method based on hue,saturation and value color space and connected component labeling was presented,which can obtain the complete leaf image without veins and back-ground.The BP-RBF hybrid neural network was used to test the influence of shape and texture on species recogni-tion.The recognition accuracy of different classifiers was used to compare classification performance.The accuracy of the BP-RBF hybrid neural network using nine dimensional features was 96.2%,highest among all the classifiers.
基金National Natural Science Foundation of China(Nos.61806051 and 61903078)Fundamental Research Funds for the Central Universities,China(Nos.2232021A-10 and 2232021D-32)Natural Science Foundation of Shanghai,China(No.20ZR1400400)。
文摘In the actual complex environment,the recognition accuracy of crop leaf disease is often not high.Inspired by the brain parallel interaction mechanism,a two-stream parallel interactive convolutional neural network(TSPI-CNN)is proposed to improve the recognition accuracy.TSPI-CNN includes a two-stream parallel network(TSP-Net)and a parallel interactive network(PI-Net).TSP-Net simulates the ventral and dorsal stream.PI-Net simulates the interaction between two pathways in the process of human brain visual information transmission.A large number of experiments shows that the proposed TSPI-CNN performs well on MK-D2,PlantVillage,Apple-3 leaf,and Cassava leaf datasets.Furthermore,the effect of numbers of interactions on the recognition performance of TSPI-CNN is discussed.The experimental results show that as the number of interactions increases,the recognition accuracy of the network also increases.Finally,the network is visualized to show the working mechanism of the network and provide enlightenment for future research.
基金Natural Science Foundation of China(grant Nos.61473237,61202170,and 61402331)It is also supported by the Shaanxi Provincial Natural Science Foundation Research Project(2014JM2-6096)+3 种基金Tianjin Research Program of Application Foundation and Advanced Technology(14JCYBJC42500)Tianjin science and technology correspondent project(16JCTPJC47300)the 2015 key projects of Tianjin science and technology support program(No.15ZCZDGX00200)the Fund of Tianjin Food Safety&Low Carbon Manufacturing Collaborative Innovation Center.
文摘Apple leaf disease is one of the main factors to constrain the apple production and quality.It takes a long time to detect the diseases by using the traditional diagnostic approach,thus farmers often miss the best time to prevent and treat the diseases.Apple leaf disease recognition based on leaf image is an essential research topic in the field of computer vision,where the key task is to find an effective way to represent the diseased leaf images.In this research,based on image processing techniques and pattern recognition methods,an apple leaf disease recognition method was proposed.A color transformation structure for the input RGB(Red,Green and Blue)image was designed firstly and then RGB model was converted to HSI(Hue,Saturation and Intensity),YUV and gray models.The background was removed based on a specific threshold value,and then the disease spot image was segmented with region growing algorithm(RGA).Thirty-eight classifying features of color,texture and shape were extracted from each spot image.To reduce the dimensionality of the feature space and improve the accuracy of the apple leaf disease identification,the most valuable features were selected by combining genetic algorithm(GA)and correlation based feature selection(CFS).Finally,the diseases were recognized by SVM classifier.In the proposed method,the selected feature subset was globally optimum.The experimental results of more than 90%correct identification rate on the apple diseased leaf image database which contains 90 disease images for there kinds of apple leaf diseases,powdery mildew,mosaic and rust,demonstrate that the proposed method is feasible and effective.
基金This study was financially supported by the National Natural Science Foundation of China(61172127)the Research Fund for the Doctoral Program of Higher Education(KJQN1114)+2 种基金Anhui Provincial Natural Science Foundation(1308085QC58)the 211 Project Youth Scientific Research Fund of Anhui UniversityProvincial Natural Science Foundation of Anhui Universities(KJ2013A026)。
文摘Locally linear embedding(LLE)algorithm has a distinct deficiency in practical application.It requires users to select the neighborhood parameter,k,which denotes the number of nearest neighbors.A new adaptive method is presented based on supervised LLE in this article.A similarity measure is formed by utilizing the Fisher projection distance,and then it is used as a threshold to select k.Different samples will produce different k adaptively according to the density of the data distribution.The method is applied to classify plant leaves.The experimental results show that the average classification rate of this new method is up to 92.4%,which is much better than the results from the traditional LLE and supervised LLE.
文摘Leaf disease recognition using image processing and deep learning techniques is currently a vibrant research area.Most studies have focused on recognizing diseases from images of whole leaves.This approach limits the resulting models’ability to estimate leaf disease severity or identify multiple anomalies occurring on the same leaf.Recent studies have demonstrated that classifying leaf diseases based on individual lesions greatly enhances disease recognition accuracy.In those studies,however,the lesions were laboriously cropped by hand.This study proposes a semi-automatic algorithm that facilitates the fast and efficient preparation of datasets of individual lesions and leaf image pixel maps to overcome this problem.These datasets were then used to train and test lesion classifier and semantic segmentation Convolutional Neural Network(CNN)models,respectively.We report that GoogLeNet’s disease recognition accuracy improved by more than 15%when diseases were recognized from lesion images compared to when disease recognition was done using images of whole leaves.A CNN model which performs semantic segmentation of both the leaf and lesions in one pass is also proposed in this paper.The proposed KijaniNet model achieved state-of-the-art segmentation performance in terms of mean Intersection over Union(mIoU)score of 0.8448 and 0.6257 for the leaf and lesion pixel classes,respectively.In terms of mean boundary F1 score,the KijaniNet model attained 0.8241 and 0.7855 for the two pixel classes,respectively.Lastly,a fully automatic algorithm for leaf disease recognition from individual lesions is proposed.The algorithm employs the semantic segmentation network cascaded to a GoogLeNet classifier for lesion-wise disease recognition.The proposed fully automatic algorithm outperforms competing methods in terms of its superior segmentation and classification performance despite being trained on a small dataset.