Vapor pressure deficit(VPD)plays a crucial role in determining plant physiological functions and exerts a substantial influence on vegetation,second only to carbon dioxide(CO_(2)).As a robust indicator of atmospheric ...Vapor pressure deficit(VPD)plays a crucial role in determining plant physiological functions and exerts a substantial influence on vegetation,second only to carbon dioxide(CO_(2)).As a robust indicator of atmospheric water demand,VPD has implications for global water resources,and its significance extends to the structure and functioning of ecosystems.However,the influence of VPD on vegetation growth under climate change remains unclear in China.This study employed empirical equations to estimate the VPD in China from 2000 to 2020 based on meteorological reanalysis data of the Climatic Research Unit(CRU)Time-Series version 4.06(TS4.06)and European Centre for Medium-Range Weather Forecasts(ECMWF)Reanalysis 5(ERA-5).Vegetation growth status was characterized using three vegetation indices,namely gross primary productivity(GPP),leaf area index(LAI),and near-infrared reflectance of vegetation(NIRv).The spatiotemporal dynamics of VPD and vegetation indices were analyzed using the Theil-Sen median trend analysis and Mann-Kendall test.Furthermore,the influence of VPD on vegetation growth and its relative contribution were assessed using a multiple linear regression model.The results indicated an overall negative correlation between VPD and vegetation indices.Three VPD intervals for the correlations between VPD and vegetation indices were identified:a significant positive correlation at VPD below 4.820 hPa,a significant negative correlation at VPD within 4.820–9.000 hPa,and a notable weakening of negative correlation at VPD above 9.000 hPa.VPD exhibited a pronounced negative impact on vegetation growth,surpassing those of temperature,precipitation,and solar radiation in absolute magnitude.CO_(2) contributed most positively to vegetation growth,with VPD offsetting approximately 30.00%of the positive effect of CO_(2).As the rise of VPD decelerated,its relative contribution to vegetation growth diminished.Additionally,the intensification of spatial variations in temperature and precipitation accentuated the spatial heterogeneity in the impact of VPD on vegetation growth in China.This research provides a theoretical foundation for addressing climate change in China,especially regarding the challenges posed by increasing VPD.展开更多
【目的】探究马铃薯的叶气温差与环境因子的关系,进一步优化马铃薯水分胁迫指数模型。【方法】在河南农业大学林学院试验基地进行马铃薯盆栽试验,选择晴朗天气测定不同土壤含水率下马铃薯的叶气温差随太阳辐射和大气饱和水汽压差(VPD)...【目的】探究马铃薯的叶气温差与环境因子的关系,进一步优化马铃薯水分胁迫指数模型。【方法】在河南农业大学林学院试验基地进行马铃薯盆栽试验,选择晴朗天气测定不同土壤含水率下马铃薯的叶气温差随太阳辐射和大气饱和水汽压差(VPD)的变化规律,确定作物水分胁迫指数(crop water stress index,CWSI)的上下基线,进一步试验后得到优化后的马铃薯CWSI经验模型,并对相关模型进行验证。【结果】马铃薯的叶气温差随着土壤含水率的降低而升高;当土壤含水率较低(7.28%)时,马铃薯的叶气温差随太阳辐射的增大而增大,呈显著线性关系;当土壤含水率较高(15.85%)时,马铃薯的叶气温差随VPD的增大而减小,呈显著线性关系;构建出马铃薯CWSI的上基线为y=0.0098Q-0.68[Q为太阳辐射强度/(W·m^(-2))],下基线为y=-1.67V+3.75(V为大气饱和水汽压差/kPa);将优化的CWSI模型验证后得知,随着土壤含水率的减少,CWSI值增加,且CWSI同土壤含水量呈极显著负相关关系(p<0.01)。【结论】马铃薯的最大叶气温差与太阳辐射的线性关系作为马铃薯水分胁迫指数的上基线是可行的,该研究对传统CWSI经验模型进行改进,进一步优化了CWSI经验模型。展开更多
Quantifying the variation in stomatal behavior and functional traits of trees with elevation can provide a better understanding of the adaptative strategies to a changing climate. In this study, six water-and carbon-r...Quantifying the variation in stomatal behavior and functional traits of trees with elevation can provide a better understanding of the adaptative strategies to a changing climate. In this study, six water-and carbon-related functional traits were examined for three dominant tree species, Schima superba, Pinus massoniana and Castanopsis chinensis, in a mixed coniferous and broad-leaved forest at two elevations(70 and 360 m above sea level,respectively) in low subtropical China. We hypothesized that trees at higher elevations would develop more efficient strategies of stomatal regulations and greater water transport capacity to cope with more variable hydrothermal conditions than those at lower elevations. Results show that the hydraulic conductivity did not differ between trees at the two elevations, contrary to our expectation. The C. chinensis trees had greater values of leaf mass per unit area(LMA), and the S. superba and C. chinensis trees had greater values of wood density(WD),relative stem water content(RWC), and ratio of sapwood area to leaf area(Hv) at the 360-m elevation than at 70-m elevation. The mean canopy stomatal conductance was greater and more sensitive to vapor deficit pressure at360 m than at 70 m for both S. superba and C. chinensis, while stomatal sensitivity did not differ between the two contrasting elevations for P. massoniana. The midday leaf water potential(ψL) in P. massoniana was significantly more negative at 360 m than at 70 m, but did not vary with increasing elevation in both S. superba and C. chinensis.Variations in Hvcan be related to the differential stomatal behaviors between the two elevations. The variations of stomatal behavior and ψLwith elevation suggested the isohydric strategy for the two broad-leaved species and the anisohydric strategy for the conifer species. The species-specific differences in LMA, WD, RWC, and Hvbetween the two elevations may reflect conservative resource use strategies at the higher elevation. Our findings revealed a close relationship between hydraulic and stomatal behavior and may help better understand the functional responses of forests to changing environmental conditions.展开更多
Riparian vegetation belts in arid regions of Central Asia are endangered to lose their ecosystem services due to intensified land use.For the development of sustained land use,management knowledge of plant performance...Riparian vegetation belts in arid regions of Central Asia are endangered to lose their ecosystem services due to intensified land use.For the development of sustained land use,management knowledge of plant performance in relation to resource supply is needed.We estimated productivity related functional traits at the edges of the habitat of Populus euphratica Oliv.Specific leaf area (SLA) and carbon/nitrogen (C/N) ratio of P.euphratica leaves growing near a former river bank and close to moving sand dunes in the Ebinur Lake National Nature Reserve in Xinjiang,Northwest China (near Kazakhstan) were determined and daily courses of CO2 net assimilation (PN),transpiration (E),and stomatal conductance (gs) of two consecutive seasons were measured during July-August 2007 and June-July 2008.Groundwater level was high (1.5-2.5 m below ground) throughout the years and no flooding occurred at the two tree stands.SLA was slightly lower near the desert than at the former river bank and leaves contained less N in relation to C.Highest E and gs of P.euphratica were reached in the morning before noon on both stands and a second low maximum occurred in the afternoon despite of the unchanged high levels of air to leaf water vapor pressure deficit (ALVPD).Decline of gs in P.euphratica was followed by decrease of E.Water use efficiency (WUE) of leaves near the desert were higher in the morning and the evening,in contrast to leaves from the former river bank that maintained an almost stable level throughout the day.High light compensation points and high light saturation levels of PN indicated the characteristics of leaves well-adapted to intensive irradiation at both stands.In general,leaves of P.euphratica decreased their gs beyond 20 Pa/kPa ALVPD in order to limit water losses.Decrease of E did not occur in both stands until 40 Pa/kPa ALVPD was reached.Full stomatal closure of P.euphratica was achieved at 60 Pa/kPa ALVPD in both stands.E through the leaf surface amounted up to 30% of the highest E rates,indicating dependence on water recharge from the ground despite of obviously closed stomata.A distinct leaf surface temperature (Tleaf) threshold of around 30℃ also existed before stomata started to close.Generally,the differences in gas exchange between both stands were small,which led to the conclusion that micro-climatic constraints to E and photosynthesis were not the major factors for declining tree density with increasing distance from the river.展开更多
基金This research was supported by the National Natural Science Foundation of China(42161058).
文摘Vapor pressure deficit(VPD)plays a crucial role in determining plant physiological functions and exerts a substantial influence on vegetation,second only to carbon dioxide(CO_(2)).As a robust indicator of atmospheric water demand,VPD has implications for global water resources,and its significance extends to the structure and functioning of ecosystems.However,the influence of VPD on vegetation growth under climate change remains unclear in China.This study employed empirical equations to estimate the VPD in China from 2000 to 2020 based on meteorological reanalysis data of the Climatic Research Unit(CRU)Time-Series version 4.06(TS4.06)and European Centre for Medium-Range Weather Forecasts(ECMWF)Reanalysis 5(ERA-5).Vegetation growth status was characterized using three vegetation indices,namely gross primary productivity(GPP),leaf area index(LAI),and near-infrared reflectance of vegetation(NIRv).The spatiotemporal dynamics of VPD and vegetation indices were analyzed using the Theil-Sen median trend analysis and Mann-Kendall test.Furthermore,the influence of VPD on vegetation growth and its relative contribution were assessed using a multiple linear regression model.The results indicated an overall negative correlation between VPD and vegetation indices.Three VPD intervals for the correlations between VPD and vegetation indices were identified:a significant positive correlation at VPD below 4.820 hPa,a significant negative correlation at VPD within 4.820–9.000 hPa,and a notable weakening of negative correlation at VPD above 9.000 hPa.VPD exhibited a pronounced negative impact on vegetation growth,surpassing those of temperature,precipitation,and solar radiation in absolute magnitude.CO_(2) contributed most positively to vegetation growth,with VPD offsetting approximately 30.00%of the positive effect of CO_(2).As the rise of VPD decelerated,its relative contribution to vegetation growth diminished.Additionally,the intensification of spatial variations in temperature and precipitation accentuated the spatial heterogeneity in the impact of VPD on vegetation growth in China.This research provides a theoretical foundation for addressing climate change in China,especially regarding the challenges posed by increasing VPD.
文摘【目的】探究马铃薯的叶气温差与环境因子的关系,进一步优化马铃薯水分胁迫指数模型。【方法】在河南农业大学林学院试验基地进行马铃薯盆栽试验,选择晴朗天气测定不同土壤含水率下马铃薯的叶气温差随太阳辐射和大气饱和水汽压差(VPD)的变化规律,确定作物水分胁迫指数(crop water stress index,CWSI)的上下基线,进一步试验后得到优化后的马铃薯CWSI经验模型,并对相关模型进行验证。【结果】马铃薯的叶气温差随着土壤含水率的降低而升高;当土壤含水率较低(7.28%)时,马铃薯的叶气温差随太阳辐射的增大而增大,呈显著线性关系;当土壤含水率较高(15.85%)时,马铃薯的叶气温差随VPD的增大而减小,呈显著线性关系;构建出马铃薯CWSI的上基线为y=0.0098Q-0.68[Q为太阳辐射强度/(W·m^(-2))],下基线为y=-1.67V+3.75(V为大气饱和水汽压差/kPa);将优化的CWSI模型验证后得知,随着土壤含水率的减少,CWSI值增加,且CWSI同土壤含水量呈极显著负相关关系(p<0.01)。【结论】马铃薯的最大叶气温差与太阳辐射的线性关系作为马铃薯水分胁迫指数的上基线是可行的,该研究对传统CWSI经验模型进行改进,进一步优化了CWSI经验模型。
基金funded by the National Natural Science Foundation of China,grant number 32171501 and 31770646the Guangdong Basic and Applied Basic Research Foundation,grant number2021A1515012486。
文摘Quantifying the variation in stomatal behavior and functional traits of trees with elevation can provide a better understanding of the adaptative strategies to a changing climate. In this study, six water-and carbon-related functional traits were examined for three dominant tree species, Schima superba, Pinus massoniana and Castanopsis chinensis, in a mixed coniferous and broad-leaved forest at two elevations(70 and 360 m above sea level,respectively) in low subtropical China. We hypothesized that trees at higher elevations would develop more efficient strategies of stomatal regulations and greater water transport capacity to cope with more variable hydrothermal conditions than those at lower elevations. Results show that the hydraulic conductivity did not differ between trees at the two elevations, contrary to our expectation. The C. chinensis trees had greater values of leaf mass per unit area(LMA), and the S. superba and C. chinensis trees had greater values of wood density(WD),relative stem water content(RWC), and ratio of sapwood area to leaf area(Hv) at the 360-m elevation than at 70-m elevation. The mean canopy stomatal conductance was greater and more sensitive to vapor deficit pressure at360 m than at 70 m for both S. superba and C. chinensis, while stomatal sensitivity did not differ between the two contrasting elevations for P. massoniana. The midday leaf water potential(ψL) in P. massoniana was significantly more negative at 360 m than at 70 m, but did not vary with increasing elevation in both S. superba and C. chinensis.Variations in Hvcan be related to the differential stomatal behaviors between the two elevations. The variations of stomatal behavior and ψLwith elevation suggested the isohydric strategy for the two broad-leaved species and the anisohydric strategy for the conifer species. The species-specific differences in LMA, WD, RWC, and Hvbetween the two elevations may reflect conservative resource use strategies at the higher elevation. Our findings revealed a close relationship between hydraulic and stomatal behavior and may help better understand the functional responses of forests to changing environmental conditions.
基金funded by the German Academic Exchange Service,PPP-China(D/06/00362)
文摘Riparian vegetation belts in arid regions of Central Asia are endangered to lose their ecosystem services due to intensified land use.For the development of sustained land use,management knowledge of plant performance in relation to resource supply is needed.We estimated productivity related functional traits at the edges of the habitat of Populus euphratica Oliv.Specific leaf area (SLA) and carbon/nitrogen (C/N) ratio of P.euphratica leaves growing near a former river bank and close to moving sand dunes in the Ebinur Lake National Nature Reserve in Xinjiang,Northwest China (near Kazakhstan) were determined and daily courses of CO2 net assimilation (PN),transpiration (E),and stomatal conductance (gs) of two consecutive seasons were measured during July-August 2007 and June-July 2008.Groundwater level was high (1.5-2.5 m below ground) throughout the years and no flooding occurred at the two tree stands.SLA was slightly lower near the desert than at the former river bank and leaves contained less N in relation to C.Highest E and gs of P.euphratica were reached in the morning before noon on both stands and a second low maximum occurred in the afternoon despite of the unchanged high levels of air to leaf water vapor pressure deficit (ALVPD).Decline of gs in P.euphratica was followed by decrease of E.Water use efficiency (WUE) of leaves near the desert were higher in the morning and the evening,in contrast to leaves from the former river bank that maintained an almost stable level throughout the day.High light compensation points and high light saturation levels of PN indicated the characteristics of leaves well-adapted to intensive irradiation at both stands.In general,leaves of P.euphratica decreased their gs beyond 20 Pa/kPa ALVPD in order to limit water losses.Decrease of E did not occur in both stands until 40 Pa/kPa ALVPD was reached.Full stomatal closure of P.euphratica was achieved at 60 Pa/kPa ALVPD in both stands.E through the leaf surface amounted up to 30% of the highest E rates,indicating dependence on water recharge from the ground despite of obviously closed stomata.A distinct leaf surface temperature (Tleaf) threshold of around 30℃ also existed before stomata started to close.Generally,the differences in gas exchange between both stands were small,which led to the conclusion that micro-climatic constraints to E and photosynthesis were not the major factors for declining tree density with increasing distance from the river.