The construction and installation of street lighting is an important element in the modernization of China’s cities.Besides,it also plays an important role in raising the living standards of the people.In recent year...The construction and installation of street lighting is an important element in the modernization of China’s cities.Besides,it also plays an important role in raising the living standards of the people.In recent years,with the technological and economic development,smart street lighting has gradually emerged.Key functions of smart street lighting include road illumination,cultural promotion,meteorological monitoring,public broadcasting,and 5G micro-base stations.The overall quality of smart street lighting construction directly impacts the effectiveness of urban development and the city’s comprehensive growth.This paper analyzes the concept of smart street lighting,its advantages and disadvantages,the functionalities of smart street light systems,and the application of smart street lighting in urban road illumination.展开更多
This project adopts an advanced microcontroller as the core control unit,which accurately commands the servo drive,realizes the real-time light chasing and charging function of the solar panel,and effectively manages ...This project adopts an advanced microcontroller as the core control unit,which accurately commands the servo drive,realizes the real-time light chasing and charging function of the solar panel,and effectively manages the power supply system of the street light.At the same time,the system is able to continuously monitor the operation status of the servo within the range of 0°to 180°to ensure that it is trouble-free and not offline.The hardware system construction consists of five modules:a power module,solar panel module,servo module,street light module,and Organic Light-Emitting Diode(OLED)display module.Each module works together to support the stable operation of the whole system.The system workflow is to accurately determine the direction of the light source by collecting real-time light intensity data through four precision photoresistors.Subsequently,the microcontroller intelligently controls the helm module based on these data to drive the solar panel to rotate within a range of 180°to accurately track the sun’s orientation.The street light provides two lighting modes,automatic and manual,to meet the needs of different scenarios.During the daytime,the solar panels work actively to monitor and collect solar energy efficiently in real-time,meanwhile,when night falls,the solar panels switch to standby mode and the streetlights light up automatically,illuminating the road ahead for pedestrians.Compared with the traditional solar street lights on the market,the intelligent solar light chasing road system introduced in this project has significant advantages.Its unique light-chasing algorithm enables the solar panel to continuously track the light source from sunrise to sunset,thus significantly improving the charging efficiency.Compared with traditional street lights,the biggest advantage of this project is the proposed light-chasing algorithm,which can always charge from sunrise until sunset,making the charging efficiency increase by 38%to 47%.The charging efficiency is 20%to 38%higher than that of traditional street lamps.Simultaneously,the biggest advantage of this project is that the power storage capacity is higher than 35%of the traditional solar street light.Bringing users a more durable and stable lighting experience.展开更多
The huge amount of electrical power of many countries is consumed in lighting the streets. However, vehicles pass with very low rate in specific periods of time and parts of the streets are not occupied by vehicles ov...The huge amount of electrical power of many countries is consumed in lighting the streets. However, vehicles pass with very low rate in specific periods of time and parts of the streets are not occupied by vehicles over time. In this paper, we propose a system that automatically switches off the light for the parts of the streets having no vehicles and turns on the light for these parts once there are some vehicles that are going to come. Logically, this system may save a large amount of the electrical power. In addition, it may increase the lifetime of the lamps and reduce the pollutions. This system automatically controls and monitors the light of the streets. It can light only the parts that have vehicles and help on the maintenance of the lighting equipments. Vehicular Ad-Hoc Networks (VANET) make it possible to propose such system. VANET enables the possibility to know the presence of vehicles, their locations, their directions and their speeds in real time. These quantities are what are needed to develop this system. An advantage of using VANET is that there is no need to use specific network and equipments to design the system, but VANET infrastructure will be used. This decreases the cost and speed up the deployment of such system. This paper focuses on the proposal of different possible architectures of this system. Results show that the saved energy may reach up to 65% and an increase of the lifetime of the lamps of 53%.展开更多
With the advantages of long lifetime, high lighting effect and non-pollution, LED lighting has taken a leading role in the lighting sector. LED street and tunnel lights have no unified product interface, so the produc...With the advantages of long lifetime, high lighting effect and non-pollution, LED lighting has taken a leading role in the lighting sector. LED street and tunnel lights have no unified product interface, so the products of different enterprises cannot interchange with each other, restraining the development of the whole industry due to the large-scale production problem. The alliance standard CSA 016-2013 has been approved as a national standard project, paving the way for the orderly development of LED industry. Interpreting the CSA 016 standard, the paper expounds on the technical requirements for interchangeable interface in the optical, mechanical, electrical and thermal aspects.展开更多
At present,the number of road engineering projects is increasing,and the corresponding street lighting work is receiving much more attention.In order to improve the lighting,operation,convenience,and energy-saving eff...At present,the number of road engineering projects is increasing,and the corresponding street lighting work is receiving much more attention.In order to improve the lighting,operation,convenience,and energy-saving effect of urban streets,the concept of“smart lighting”needs to be implemented.This includes the planning of an urban street lighting design scheme and the use of appropriate software as well as components to realize significant optimization of the lighting work in urban streets.Therefore,this paper discusses the application measures of smart lighting in urban street lighting to provide reference.展开更多
The paper summarizes the research on the development of standards for tunnels and roads LED lighiing application in Shanghai. analyzes the existing problems on LED road lamps and lighting design, introduces the experi...The paper summarizes the research on the development of standards for tunnels and roads LED lighiing application in Shanghai. analyzes the existing problems on LED road lamps and lighting design, introduces the experiments and testing results, and summarizes current problems of LED street lighting, proposing that LED lighting energy conservation should he "systematic energy saving" throughout the full life cycle based on the integration of products and applications.展开更多
An energy-saving light-emitting-diode(LED) street lamp was conducted. Based on the simulation by optical software TracePro,a physical street lamp system including 600 white LEDs was achieved. This system was operated ...An energy-saving light-emitting-diode(LED) street lamp was conducted. Based on the simulation by optical software TracePro,a physical street lamp system including 600 white LEDs was achieved. This system was operated under a constant current of 20 mA for each unit,and the electric power consumption of the whole lamp was only 42 W. Experimental results demonstrated that the total average illuminance reached 8.8 lx and the overall uniformity was 0.370 for a 30-m-long and 10-m-wide test area at a height of 8 m,which is fully acceptable for the current standard for sub-main road.展开更多
文摘The construction and installation of street lighting is an important element in the modernization of China’s cities.Besides,it also plays an important role in raising the living standards of the people.In recent years,with the technological and economic development,smart street lighting has gradually emerged.Key functions of smart street lighting include road illumination,cultural promotion,meteorological monitoring,public broadcasting,and 5G micro-base stations.The overall quality of smart street lighting construction directly impacts the effectiveness of urban development and the city’s comprehensive growth.This paper analyzes the concept of smart street lighting,its advantages and disadvantages,the functionalities of smart street light systems,and the application of smart street lighting in urban road illumination.
文摘This project adopts an advanced microcontroller as the core control unit,which accurately commands the servo drive,realizes the real-time light chasing and charging function of the solar panel,and effectively manages the power supply system of the street light.At the same time,the system is able to continuously monitor the operation status of the servo within the range of 0°to 180°to ensure that it is trouble-free and not offline.The hardware system construction consists of five modules:a power module,solar panel module,servo module,street light module,and Organic Light-Emitting Diode(OLED)display module.Each module works together to support the stable operation of the whole system.The system workflow is to accurately determine the direction of the light source by collecting real-time light intensity data through four precision photoresistors.Subsequently,the microcontroller intelligently controls the helm module based on these data to drive the solar panel to rotate within a range of 180°to accurately track the sun’s orientation.The street light provides two lighting modes,automatic and manual,to meet the needs of different scenarios.During the daytime,the solar panels work actively to monitor and collect solar energy efficiently in real-time,meanwhile,when night falls,the solar panels switch to standby mode and the streetlights light up automatically,illuminating the road ahead for pedestrians.Compared with the traditional solar street lights on the market,the intelligent solar light chasing road system introduced in this project has significant advantages.Its unique light-chasing algorithm enables the solar panel to continuously track the light source from sunrise to sunset,thus significantly improving the charging efficiency.Compared with traditional street lights,the biggest advantage of this project is the proposed light-chasing algorithm,which can always charge from sunrise until sunset,making the charging efficiency increase by 38%to 47%.The charging efficiency is 20%to 38%higher than that of traditional street lamps.Simultaneously,the biggest advantage of this project is that the power storage capacity is higher than 35%of the traditional solar street light.Bringing users a more durable and stable lighting experience.
文摘The huge amount of electrical power of many countries is consumed in lighting the streets. However, vehicles pass with very low rate in specific periods of time and parts of the streets are not occupied by vehicles over time. In this paper, we propose a system that automatically switches off the light for the parts of the streets having no vehicles and turns on the light for these parts once there are some vehicles that are going to come. Logically, this system may save a large amount of the electrical power. In addition, it may increase the lifetime of the lamps and reduce the pollutions. This system automatically controls and monitors the light of the streets. It can light only the parts that have vehicles and help on the maintenance of the lighting equipments. Vehicular Ad-Hoc Networks (VANET) make it possible to propose such system. VANET enables the possibility to know the presence of vehicles, their locations, their directions and their speeds in real time. These quantities are what are needed to develop this system. An advantage of using VANET is that there is no need to use specific network and equipments to design the system, but VANET infrastructure will be used. This decreases the cost and speed up the deployment of such system. This paper focuses on the proposal of different possible architectures of this system. Results show that the saved energy may reach up to 65% and an increase of the lifetime of the lamps of 53%.
文摘With the advantages of long lifetime, high lighting effect and non-pollution, LED lighting has taken a leading role in the lighting sector. LED street and tunnel lights have no unified product interface, so the products of different enterprises cannot interchange with each other, restraining the development of the whole industry due to the large-scale production problem. The alliance standard CSA 016-2013 has been approved as a national standard project, paving the way for the orderly development of LED industry. Interpreting the CSA 016 standard, the paper expounds on the technical requirements for interchangeable interface in the optical, mechanical, electrical and thermal aspects.
文摘At present,the number of road engineering projects is increasing,and the corresponding street lighting work is receiving much more attention.In order to improve the lighting,operation,convenience,and energy-saving effect of urban streets,the concept of“smart lighting”needs to be implemented.This includes the planning of an urban street lighting design scheme and the use of appropriate software as well as components to realize significant optimization of the lighting work in urban streets.Therefore,this paper discusses the application measures of smart lighting in urban street lighting to provide reference.
文摘The paper summarizes the research on the development of standards for tunnels and roads LED lighiing application in Shanghai. analyzes the existing problems on LED road lamps and lighting design, introduces the experiments and testing results, and summarizes current problems of LED street lighting, proposing that LED lighting energy conservation should he "systematic energy saving" throughout the full life cycle based on the integration of products and applications.
文摘An energy-saving light-emitting-diode(LED) street lamp was conducted. Based on the simulation by optical software TracePro,a physical street lamp system including 600 white LEDs was achieved. This system was operated under a constant current of 20 mA for each unit,and the electric power consumption of the whole lamp was only 42 W. Experimental results demonstrated that the total average illuminance reached 8.8 lx and the overall uniformity was 0.370 for a 30-m-long and 10-m-wide test area at a height of 8 m,which is fully acceptable for the current standard for sub-main road.