期刊文献+
共找到86,335篇文章
< 1 2 250 >
每页显示 20 50 100
LEAKAGE-PLUGGING WHILE DRILLING AND PLUGGING AGENTS 被引量:1
1
作者 Peng Zhenbin Zhang Xuzhi Dai Qianwei(Department of Geology, Central South University ofTechnology, Changsha 410083, China) 《Journal of Central South University》 SCIE EI CAS 1996年第1期29-32,共4页
LEAKAGE-PLUGGINGWHILEDRILLINGANDPLUGGINGAGENTSPengZhenbinZhangXuzhiDaiQianwei(DepartmentofGeology,CentralSou... LEAKAGE-PLUGGINGWHILEDRILLINGANDPLUGGINGAGENTSPengZhenbinZhangXuzhiDaiQianwei(DepartmentofGeology,CentralSouthUniversityofTec... 展开更多
关键词 leakageplugging drilling plugging agents
下载PDF
The Conversion of Non-Dispersed Polymers into Low-Potassium Anti-Collapse Drilling Fluids
2
作者 Hao Hu Jian Guan +2 位作者 Shanfa Tang Jialuo Rong Yuanpeng Cheng 《Fluid Dynamics & Materials Processing》 EI 2024年第2期325-335,共11页
Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low ... Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low potas-sium anti-collapsing drillingfluid is investigated.Since the two drillingfluids belong to completely different types,the key to this conversion is represented by new inhibitors,dispersants and water-loss agents by which a non-dispersed drillingfluid can be turned into a dispersed drillingfluid while ensuring wellbore stability and reason-able rheology(carrying sand—inhibiting cuttings dispersion).In particular,the(QYZ-1)inhibitors and(FSJSS-2)dispersants are used.The former can inhibit the hydration expansion capacity of clay,reduce the dynamic shear force and weaken the viscosity;the latter can improve the sealing effect and reduce thefiltrate loss.The results have shown that after adding a reasonable proportion of these substances(QYZ-1:FSJSS-2)to the non-dispersed polymer drillingfluid,while the apparent viscosity,plastic viscosity,structural viscosity andfluidity index under-went almost negligible changes,the dynamic plastic ratio increased,and thefiltration loss decreased significantly,thereby indicating good compatibility.According to the tests(conducted in the Leijia area),the density was 1.293 g/cm3,and after standing for 24 h,the SF(static settlement factor)was 0.51.Moreover,thefiltration loss was reduced to 4.0 mL,the rolling recovery rate reached 96.92%,with excellent plugging and anti-collapse performances. 展开更多
关键词 Non-dispersed polymer drilling fluid low potassium anti-collapsing drilling fluid drilling fluid conversion drilling fluid reuse filter vector
下载PDF
Research and Application of Fuling Shale Gas Anti-Collapse and Anti-Leakage Drilling Fluid System 被引量:1
3
作者 Baijing Wang Chunzhi Luo Yidi Wang 《Open Journal of Yangtze Oil and Gas》 2021年第2期60-71,共12页
Aiming at the problems of microfracture development in hard brittle shale gas layer in Fuling block, Chongqing, such as collapse of borehole wall and the existence of permeability loss of microfracture during drilling... Aiming at the problems of microfracture development in hard brittle shale gas layer in Fuling block, Chongqing, such as collapse of borehole wall and the existence of permeability loss of microfracture during drilling, and serious pollution of drilling environment with oil-based drilling fluid, a water-based drilling fluid system for anti-collapse and anti-leakage was studied. A water-based drilling fluid system with anti-collapse and anti-leakage was formed by introducing functional treatment agents, such as polypolysaccharide MEG, polymer emulsion film forming wall cementing agent LFGB, polyamine inhibitor LCFA and deformable particle plugging agent BXLZ, into the conventional water-based drilling fluid. After rolling at 130°C for 16 h, the system has good rheological properties, low filtration loss, good inhibition, lubrication and plugging properties. It has good plugging properties for 0.12 mm, 0.24 mm, 0.38 mm micro-cracks and 400 mD and 800 mD sand plates. The system was successfully tested on site in August 2019 in Fuling Reef Block, showing good rheological properties, solid wall plugging, and strong ability to seal and inhibit fracture expansion. There was no block falling in the drilling process, and the tripping, casing running and well cementing operations were all smooth, which provided a new technical idea and scheme for environmental protection and green drilling in Fuling shale gas exploitation. 展开更多
关键词 SHALE drilling Fluid INHIBITION Fluid Loss LUBRICITY Plugging
下载PDF
Effect of stress-dependent microannulus aperture on well leakage 被引量:1
4
作者 Meng Meng Luke P.Frash +3 位作者 J.William Carey Mohamed Mehana Wenfeng Li Bailian Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1967-1976,共10页
Debonding at the cement-casing interface is recognized as a principal failure mechanism leading to CO_(2) leakage in wells.This detachment gives rise to a microannulus,which notably possesses greater permeability than... Debonding at the cement-casing interface is recognized as a principal failure mechanism leading to CO_(2) leakage in wells.This detachment gives rise to a microannulus,which notably possesses greater permeability than undamaged cement,undermining its sealing efficacy.Conventionally,the permeability of the microannulus is regarded as a uniform value throughout the well.However,fundamentally,a microannulus is one type of fracture,and its gap or aperture size is affected by the effective stress.In this work,we developed a unique experimental apparatus.This equipment facilitates the curing of cement inside a steel casing,the formation of a microannulus between the casing and the cement,and the investigation of the fluid flow dynamics along the microannulus under laboratory-replicated in situ conditions.The microannulus was formed by injecting fluid from one end of the setup,and receiving similar amount of fluid on the other end signified the development of the leakage channel.Additionally,strain gauges affixed to the casing’s external surface yielded key information on the microannulus’s opening and closure.We observed a noticeable decline in microannulus hydraulic aperture(or permeability)in relation to effective stress and an exponential equation fits their relationship.Our findings also indicate a distinct behavior when comparing liquid CO_(2) with water.Specifically,it is easier for liquid CO_(2) to create the microannulus.However,the hydraulic aperture range for this microannulus(0.7-6 mm)is considerably smaller than that created by water flow(2-17 mm).Finally,we integrated the stressdependent microannulus aperture size into the combined analysis of well mechanical integrity and well leakage.The outcomes consistently demonstrated that when factoring in the stress-dependent aperture sizes,the leakage rates are 3e5 times compared to a fixed aperture model.The traditional assumption of a constant aperture significantly underestimates fluid leakage risks. 展开更多
关键词 Microannulus leakage assessment Aperture size Triaxial experiment Carbon sequestration
下载PDF
Digital monitoring of rotary-percussive drilling with down-the-hole hammer for profiling weathered granitic ground
5
作者 Wendal Victor Yue Siyuan Wu +2 位作者 Manchao He Yafei Qiao Zhongqi Quentin Yue 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1615-1636,共22页
Rock and geotechnical engineering investigations involve drilling holes in ground with or without retrieving soil and rock samples to construct the subsurface ground profile.On the basis of an actual soil nailing dril... Rock and geotechnical engineering investigations involve drilling holes in ground with or without retrieving soil and rock samples to construct the subsurface ground profile.On the basis of an actual soil nailing drilling for a slope stability project in Hong Kong,this paper further develops the drilling process monitoring(DPM)method for digitally profiling the subsurface geomaterials of weathered granitic rocks using a compressed airflow driven percussive-rotary drilling machine with down-the-hole(DTH)hammer.Seven transducers are installed on the drilling machine and record the chuck displacement,DTH rotational speed,and five pressures from five compressed airflows in real-time series.The mechanism and operations of the drilling machine are elaborated in detail,which is essential for understanding and evaluating the drilling data.A MATLAB program is developed to automatically filter the recorded drilling data in time series and classify them into different drilling processes in sub-time series.These processes include penetration,push-in with or without rod,pull-back with or without rod,rod-tightening and rod-untightening.The drilling data are further reconstructed to plot the curve of drill-bit depth versus the net drilling time along each of the six drillholes.Each curve is found to contain multiple linear segments with a constant penetration rate,which implies a zone of homogenous geomaterial with different weathering grades.The effect from fluctuation of the applied pressures is evaluated quantitatively.Detailed analyses are presented for accurately assess and verify the underground profiling and strength in weathered granitic rock,which provided the basis of using DPM method to confidently assess drilling measurements to interpret the subsurface profile in real time. 展开更多
关键词 drilling process monitoring(DPM) Down-the-hole(DTH)hammer Percussive-rotary drilling Weathering granitic rocks
下载PDF
Research on the Method of Heat Preservation and Heating for the Drilling System of Polar Offshore Drilling Platform
6
作者 Yingkai Dong Chaohe Chen +2 位作者 Guangyan Jia Lidai Wang Jian Bai 《Energy Engineering》 EI 2024年第5期1173-1193,共21页
This study investigates the heat dissipation mechanism of the insulation layer and other plane insulation layers in the polar drilling rig system.Combining the basic theory of heat transfer with the environmental requ... This study investigates the heat dissipation mechanism of the insulation layer and other plane insulation layers in the polar drilling rig system.Combining the basic theory of heat transfer with the environmental requirements of polar drilling operations and the characteristics of polar drilling processes,we analyze the factors that affect the insulation effect of the drilling rig system.These factors include the thermal conductivity of the insulation material,the thickness of the insulation layer,ambient temperature,and wind speed.We optimize the thermal insulation material of the polar drilling rig system using a steady-state method to measure solid thermal conductivity.By analyzing the distribution of temperature in space after heating,we optimize the distribution and air outlet angle of the heater using Fluent hydrodynamics software.The results demonstrate that under polar conditions,polyisocyanurate with stable thermodynamic properties is selected as the thermal insulation material.The selection of thermal insulation material and thickness significantly affects the thermal insulation effect of the system but has little effect on its heating effect.Moreover,when the air outlet angle of the heater is set to 32.5°,the heating efficiency of the system can be effectively improved.According to heat transfer equations and heat balance theory,we determine that the heating power required for the system to reach 5°C is close to numerical simulation. 展开更多
关键词 Polar drilling drilling system fluid dynamics heat preservation and heating numerical simulation
下载PDF
Side-Channel Leakage Analysis of Inner Product Masking
7
作者 Yuyuan Li Lang Li Yu Ou 《Computers, Materials & Continua》 SCIE EI 2024年第4期1245-1262,共18页
The Inner Product Masking(IPM)scheme has been shown to provide higher theoretical security guarantees than the BooleanMasking(BM).This scheme aims to increase the algebraic complexity of the coding to achieve a higher... The Inner Product Masking(IPM)scheme has been shown to provide higher theoretical security guarantees than the BooleanMasking(BM).This scheme aims to increase the algebraic complexity of the coding to achieve a higher level of security.Some previous work unfolds when certain(adversarial and implementation)conditions are met,and we seek to complement these investigations by understanding what happens when these conditions deviate from their expected behaviour.In this paper,we investigate the security characteristics of IPM under different conditions.In adversarial condition,the security properties of first-order IPMs obtained through parametric characterization are preserved in the face of univariate and bivariate attacks.In implementation condition,we construct two new polynomial leakage functions to observe the nonlinear leakage of the IPM and connect the security order amplification to the nonlinear function.We observe that the security of IPMis affected by the degree and the linear component in the leakage function.In addition,the comparison experiments from the coefficients,signal-to-noise ratio(SNR)and the public parameter show that the security properties of the IPM are highly implementation-dependent. 展开更多
关键词 Side-channel analysis inner product masking mutual information nonlinear leakage
下载PDF
Inverting the rock mass P-wave velocity field ahead of deep buried tunnel face while borehole drilling
8
作者 Liu Liu Shaojun Li +5 位作者 Minzong Zheng Dong Wang Minghao Chen Junbo Zhou Tingzhou Yan Zhenming Shi 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期681-697,共17页
Imaging the wave velocity field surrounding a borehole while drilling is a promising and urgently needed approach for extending the exploration range of the borehole point.This paper develops a drilling process detect... Imaging the wave velocity field surrounding a borehole while drilling is a promising and urgently needed approach for extending the exploration range of the borehole point.This paper develops a drilling process detection(DPD)system consisting of a multifunctional sensor and a pilot geophone installed at the top of the drilling rod,geophones at the tunnel face,a laser rangefinder,and an onsite computer.A weighted adjoint-state first arrival travel time tomography method is used to invert the P-wave velocity field of rock mass while borehole drilling.A field experiment in the ongoing construction of a deep buried tunnel in southwestern China demonstrated the DPD system and the tomography method.Time-frequency analysis of typical borehole drilling detection data shows that the impact drilling source is a pulse-like seismic exploration wavelet.A velocity field of the rock mass in a triangular area defined by the borehole trajectory and geophone receiving line can be obtained.Both the borehole core and optical image validate the inverted P-wave velocity field.A numerical simulation of a checkerboard benchmark model is used to test the tomography method.The rapid convergence of the misfits and consistent agreement between the inverted and observed travel times validate the P-wave velocity imaging. 展开更多
关键词 Deep buried tunnel Wave velocity field Borehole drilling Tomography Rock mass
下载PDF
A New Heat Transfer Model for Multi-Gradient Drilling with Hollow Sphere Injection
9
作者 Jiangshuai Wang Chuchu Cai +3 位作者 Pan Fu Jun Li Hongwei Yang Song Deng 《Fluid Dynamics & Materials Processing》 EI 2024年第3期537-546,共10页
Multi-gradient drilling is a new offshore drilling method.The accurate calculation of the related wellbore temperature is of great significance for the prediction of the gas hydrate formation area and the precise cont... Multi-gradient drilling is a new offshore drilling method.The accurate calculation of the related wellbore temperature is of great significance for the prediction of the gas hydrate formation area and the precise control of the wellbore pressure.In this study,a new heat transfer model is proposed by which the variable mass flow is properly taken into account.Using this model,the effects of the main factors influencing the wellbore temperature are analyzed.The results indicate that at the position where the separation injection device is installed,the temperature increase of the fluid in the drill pipe is mitigated due to the inflow/outflow of hollow spheres,and the temperature drop of the fluid in the annulus also decreases.In addition,a lower separation efficiency of the device,a shallower installation depth and a smaller circulating displacement tend to increase the temperature near the bottom of the annulus,thereby helping to reduce the hydrate generation area and playing a positive role in the prevention and control of hydrates in deepwater drilling. 展开更多
关键词 Multi-gradient drilling wellbore temperature HYDRATE separate injection device variable mass
下载PDF
Dynamic Analysis of A Deepwater Drilling Riser with A New Hang-off System
10
作者 LI Yan-wei LIU Xiu-quan +3 位作者 WANG Jin-long CHEN Guo-ming CHANG Yuan-jiang SHENG Lei-xiang 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期29-41,共13页
The safety of risers in hang-off states is a vital challenge in offshore oil and gas engineering.A new hang-off system installed on top of risers is proposed for improving the security of risers.This approach leads to... The safety of risers in hang-off states is a vital challenge in offshore oil and gas engineering.A new hang-off system installed on top of risers is proposed for improving the security of risers.This approach leads to a challenging problem:coupling the dynamics of risers with a new hang-off system combined with multiple structures and complex constraints.To accurately analyze the dynamic responses of the coupled system,a coupled dynamic model is established based on the Euler-Bernoulli beam-column theory and penalty function method.A comprehensive analysis method is proposed for coupled dynamic analysis by combining the finite element method and the Newmarkβmethod.An analysis program is also developed in MATLAB for dynamic simulation.The simulation results show that the dynamic performances of the risers at the top part are significantly improved by the new hang-off system,especially the novel design,which includes the centralizer and articulation joint.The bending moment and lateral deformation of the risers at the top part decrease,while the hang-off joint experiences a great bending moment at the bottom of the lateral restraint area which requires particular attention in design and application.The platform navigation speed range under the safety limits of risers expands with the new hang-off system in use. 展开更多
关键词 deepwater drilling riser new hang-off system dynamic analysis finite element method penalty function method
下载PDF
Evaluating Privacy Leakage and Memorization Attacks on Large Language Models (LLMs) in Generative AI Applications
11
作者 Harshvardhan Aditya Siddansh Chawla +6 位作者 Gunika Dhingra Parijat Rai Saumil Sood Tanmay Singh Zeba Mohsin Wase Arshdeep Bahga Vijay K. Madisetti 《Journal of Software Engineering and Applications》 2024年第5期421-447,共27页
The recent interest in the deployment of Generative AI applications that use large language models (LLMs) has brought to the forefront significant privacy concerns, notably the leakage of Personally Identifiable Infor... The recent interest in the deployment of Generative AI applications that use large language models (LLMs) has brought to the forefront significant privacy concerns, notably the leakage of Personally Identifiable Information (PII) and other confidential or protected information that may have been memorized during training, specifically during a fine-tuning or customization process. We describe different black-box attacks from potential adversaries and study their impact on the amount and type of information that may be recovered from commonly used and deployed LLMs. Our research investigates the relationship between PII leakage, memorization, and factors such as model size, architecture, and the nature of attacks employed. The study utilizes two broad categories of attacks: PII leakage-focused attacks (auto-completion and extraction attacks) and memorization-focused attacks (various membership inference attacks). The findings from these investigations are quantified using an array of evaluative metrics, providing a detailed understanding of LLM vulnerabilities and the effectiveness of different attacks. 展开更多
关键词 Large Language Models PII leakage Privacy Memorization OVERFITTING Membership Inference Attack (MIA)
下载PDF
Surgical Treatment of Osteonecrosis of the Femoral Head Using Minimally Invasive Surgical Drilling and Cancellous Grafting at Brazzaville University Hospital
12
作者 Kevin Parfait Bienvenu Bouhelo-Pam Marius Monka +4 位作者 Arnauld Sledje Wilfrid Bilongo Bouyou Regis Perry Massouama Paul Yèlai Ikounga Roger Bertrand Sah Mbou Armand Moyikoua 《Open Journal of Orthopedics》 2024年第2期122-132,共11页
Introduction: Osteonecrosis of the femoral head (ONTF) is a debilitating condition. Several treatments have been proposed with controversial results. The aim of our study was to evaluate treatment by surgical drilling... Introduction: Osteonecrosis of the femoral head (ONTF) is a debilitating condition. Several treatments have been proposed with controversial results. The aim of our study was to evaluate treatment by surgical drilling coupled with in situ cancellous grafting. Materials and methods: Our study was a case-control study conducted at Brazzaville University Hospital from 1st January 2018 to 31 December 2023. It compared two groups of patients with ONTF: non-operated (13 patients, 20 hips) and operated (22 patients, 35 hips). We used the visual digital scale (VDS) for pain assessment, the Merle D’Aubigne-Postel (MDP) scoring system for clinical and functional assessment, and the evolution of necrosis. Results: The group of non-operated patients had a mean age of 35.69 ± 3.4 years, no improvement in pain with an EVN above seven at the last recoil and a mean global MDP score falling from 12.7 before offloading to 10.13 at one year. The group of patients operated on had a mean age of 37.86 ± 7.02 years, a significant reduction in pain (p = 0.00004) and a significantly increased MDP score (p = 0.0034). A comparison of the two groups of patients showed significant stabilization of the necrotic lesions in the operated patients (p = 0.00067), with better satisfaction in the same group. Conclusion: Surgical drilling combined with grafting in the treatment of early-stage ONTF has improved progress in our series. The technique is reproducible and less invasive. It has made it possible to delay unfavorable progression and, consequently, hip replacement surgery. 展开更多
关键词 HIP Osteonecrosis of the Femoral Head Conservative Treatment Surgical drilling Bone Grafting
下载PDF
Thoracic spinal cord injury and paraplegia caused by intradural cement leakage after percutaneous kyphoplasty: A case report
13
作者 Zi Mao Zhi-Hong Xiong Jun-Feng Li 《World Journal of Clinical Cases》 SCIE 2024年第10期1837-1843,共7页
BACKGROUND Percutaneous kyphoplasty(PKP)is a pivotal intervention for osteoporotic fractures,pathological vertebral compression fractures,and vertebral bone tumors.Despite its efficacy,the procedure presents challenge... BACKGROUND Percutaneous kyphoplasty(PKP)is a pivotal intervention for osteoporotic fractures,pathological vertebral compression fractures,and vertebral bone tumors.Despite its efficacy,the procedure presents challenges,notably complications arising from intradural cement leakage.Timely and accurate diagnosis,coupled with emergent intervention is imperative to improve patient prognosis.This case report illuminates the intricacies and potential complications associated with PKP,emphasizing the critical need for vigilant monitoring,prompt diagnosis,and immediate intervention to mitigate adverse outcomes.CASE SUMMARY A 58-year-old male patient,experiencing a T7 osteoporosis-related pathological compression fracture,underwent PKP at a local hospital.Two weeks postprocedure,the patient developed paraplegic and dysuric symptoms,necessitating emergency decompression surgery.Gradual improvement was achieved,marked by the restoration of muscle strength,sensation,and mobility.CONCLUSION PKP Intradural cement leakage following PKP is unusual and potentially fatal.Prompt imaging examinations,urgent evaluation,and the decompression surgery are essential,which help alleviate symptoms associated with spinal damage,markedly improving the overall prognosis. 展开更多
关键词 Percutaneous kyphoplasty Intradural cement leakage COMPLICATION Decompression surgery Case report
下载PDF
Effects of Drilling in Mastoid Cavity over Hearing in the Contralateral Ear
14
作者 Saumyata Neeraj 《International Journal of Otolaryngology and Head & Neck Surgery》 2024年第2期85-102,共18页
In advanced otological surgeries, powered instruments form an indispensable part. The risk of deterioration to hearing in the operated ear is a commonly discussed issue, however, there remains a possibility of affecti... In advanced otological surgeries, powered instruments form an indispensable part. The risk of deterioration to hearing in the operated ear is a commonly discussed issue, however, there remains a possibility of affecting the hearing in the contralateral ear due to transcranial vibration. So in this study we aimed to assess the possibility of the non-operated ear being affected by the noise generated during ear surgeries and whether it is temporary or permanent in nature. Methodology: This study included 63 patients diagnosed with unilateral disease who underwent mastoid surgery. Preoperatively all the patients were subjected to Pure tone audiometry (PTA), Transient evoked otoacoustic emission (TEOAE) and Distortion product otoacoustic emission (DPOAE). Patients were operated using both cutting and diamond burrs of ranging from sizes 1 - 6 mm. Total drilling time was recorded. Results: Post-operative hearing evaluation was done at 1 week, 4 weeks and 12 weeks. The sound emitted by various burrs was recorded by Sound Level Meter. Out of the total 58 patients that followed up, 46 showed change in at least one of the hearing parameters. Patients showing changes had a higher drilling time as compared to those with no changes. Of these, the changes associated with the total drilling time and with cutting burr time were found to be significant. The hearing changes seen on PTA, TEOAE and DPOAE were transient in nature with only one patient having a persistent decreased high frequency threshold at the end of 12 weeks. It was also found that cutting burrs produce more sound as compared to diamond burrs and a larger size burr of a type produces more sound than a smaller one of its type. Conclusion: The drilling of mastoid bone during ear surgeries can transiently impair the hearing in the contralateral ear which is of great significance in patients with only one hearing ear. 展开更多
关键词 Mastoid drilling Affected Hearing Contralateral Ear Damage
下载PDF
A high-temperature resistant and high-density polymeric saturated brine-based drilling fluid
15
作者 HUANG Xianbin SUN Jinsheng +3 位作者 LYU Kaihe DONG Xiaodong LIU Fengbao GAO Chongyang 《Petroleum Exploration and Development》 SCIE 2023年第5期1215-1224,共10页
Three high-temperature resistant polymeric additives for water-based drilling fluids are designed and developed:weakly cross-linked zwitterionic polymer fluid loss reducer(WCZ),flexible polymer microsphere nano-pluggi... Three high-temperature resistant polymeric additives for water-based drilling fluids are designed and developed:weakly cross-linked zwitterionic polymer fluid loss reducer(WCZ),flexible polymer microsphere nano-plugging agent(FPM)and comb-structure polymeric lubricant(CSP).A high-temperature resistant and high-density polymeric saturated brine-based drilling fluid was developed for deep drilling.The WCZ has a good anti-polyelectrolyte effect and exhibits the API fluid loss less than 8 mL after aging in saturated salt environment at 200°C.The FPM can reduce the fluid loss by improving the quality of the mud cake and has a good plugging effect on nano-scale pores/fractures.The CSP,with a weight average molecular weight of 4804,has multiple polar adsorption sites and exhibits excellent lubricating performance under high temperature and high salt conditions.The developed drilling fluid system with a density of 2.0 g/cm^(3)has good rheological properties.It shows a fluid loss less than 15 mL at 200°C and high pressure,a sedimentation factor(SF)smaller than 0.52 after standing at high temperature for 5 d,and a rolling recovery of hydratable drill cuttings similar to oil-based drilling fluid.Besides,it has good plugging and lubricating performance. 展开更多
关键词 deep drilling saturated brine-based drilling fluid high-temperature resistant additive water-based drilling fluid rheological property plugging performance lubricating performance
下载PDF
Chemical modification of barite for improving the performance of weighting materials for water-based drilling fluids
16
作者 Li-Li Yang Ze-Yu Liu +3 位作者 Shi-bo Wang Xian-Bo He Guan-Cheng Jiang Jie Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期551-566,共16页
With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to r... With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to reservoir damage and wellbore instability.In this paper,micronized barite(MB)was modified(mMB)by grafting with hydrophilic polymer onto the surface through the free radical polymerization to displace conventional API barite partly.The suspension stability of water-based drilling fluids(WBDFs)weighted with API barite:mMB=2:1 in 600 g was significantly enhanced compared with that with API barite/WBDFs,exhibiting the static sag factor within 0.54 and the whole stability index of 2.The viscosity and yield point reached the minimum,with a reduction of more than 40%compared with API barite only at the same density.Through multi-stage filling and dense accumulation of weighting materials and clays,filtration loss was decreased,mud cake quality was improved,and simultaneously it had great reservoir protection performance,and the permeability recovery rate reached 87%.In addition,it also effectively improved the lubricity of WBDFs.The sticking coefficient of mud cake was reduced by 53.4%,and the friction coefficient was 0.2603.Therefore,mMB can serve as a versatile additive to control the density,rheology,filtration,and stability of WBDFs weighted with API barite,thus regulating comprehensive performance and achieving reservoir protection capacity.This work opened up a new path for the productive drilling of extremely deep and intricate wells by providing an efficient method for managing the performance of high-density WBDFs. 展开更多
关键词 drilling fluids Weighting materials Filtration control Reservoir protection Stability property
下载PDF
A novel responsive stabilizing Janus nanosilica as a nanoplugging agent in water-based drilling fluids for exploiting hostile shale environments
17
作者 Alain Pierre Tchameni Lv-Yan Zhuo +5 位作者 Lesly Dasilva Wandji Djouonkep Robert Dery Nagre Lu-Xin Chen Lin Zhao Chao Ma Bin-Qiang Xie 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1190-1210,共21页
Thermo-responsive nanocomposites have recently emerged as potential nanoplugging agents for shale stabilization in high-temperature water-based drilling fluids(WBDFs). However, their inhibitory properties have not bee... Thermo-responsive nanocomposites have recently emerged as potential nanoplugging agents for shale stabilization in high-temperature water-based drilling fluids(WBDFs). However, their inhibitory properties have not been very effective in high-temperature drilling operations. Thermo-responsive Janus nanocomposites are expected to strongly interact with clay particles from the inward hemisphere of nanomaterials, which drive the establishment of a tighter hydrophobic membrane over the shale surface at the outward hemisphere under geothermal conditions for shale stabilization. This work combines the synergistic benefits of thermo-responsive and zwitterionic nanomaterials to synchronously enhance the chemical inhibitions and plugging performances in shale under harsh conditions. A novel thermoresponsive Janus nanosilica(TRJS) exhibiting zwitterionic character was synthesized, characterized,and assessed as shale stabilizer for WBDFs at high temperatures. Compared to pristine nanosilica(Si NP)and symmetrical thermo-responsive nanosilica(TRS), TRJS exhibited anti-polyelectrolyte behaviour, in which electrolyte ions screened the electrostatic attraction between the charged particles, potentially stabilizing nanomaterial in hostile shaly environments(i.e., up to saturated brine or API brine). Macroscopically, TRJS exhibited higher chemical inhibition than Si NP and TRS in brine, prompting a better capability to control pressure penetration. TRJS adsorbed onto the clay surface via chemisorption and hydrogen bonding, and the interactions became substantial in brine, according to the results of electrophoretic mobility, surface wettability, and X-ray diffraction. Thus, contributing to the firm trapping of TRJS into the nanopore structure of the shale, triggering the formation of a tight hydrophobic membrane over the shale surface from the outward hemisphere. The addition of TRJS into WBDF had no deleterious effect on fluid properties after hot-treatment at 190℃, implying that TRJS could find potential use as a shale stabilizer in WBDFs in hostile environments. 展开更多
关键词 Janus nanosilica Thermo-responsive copolymer Anti-polyelectrolyte effect Shale stabilizer Inhibition Plugging drilling fluid
下载PDF
Synthetic polymers:A review of applications in drilling fluids
18
作者 Shadfar Davoodi Mohammed Al-Shargabi +2 位作者 David A.Wood Valeriy S.Rukavishnikov Konstantin M.Minaev 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期475-518,共44页
With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complicatio... With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complications.Currently,reagents based on modified natural polymers(which are naturally occurring compounds)and synthetic polymers(SPs)which are polymeric compounds created industrially,are widely used to prevent emerging complications in the drilling process.However,compared to modified natural polymers,SPs form a family of high-molecular-weight compounds that are fully synthesized by undergoing chemical polymerization reactions.SPs provide substantial flexibility in their design.Moreover,their size and chemical composition can be adjusted to provide properties for nearly all the functional objectives of drilling fluids.They can be classified based on chemical ingredients,type of reaction,and their responses to heating.However,some of SPs,due to their structural characteristics,have a high cost,a poor temperature and salt resistance in drilling fluids,and degradation begins when the temperature reaches 130℃.These drawbacks prevent SP use in some medium and deep wells.Thus,this review addresses the historical development,the characteristics,manufacturing methods,classification,and the applications of SPs in drilling fluids.The contributions of SPs as additives to drilling fluids to enhance rheology,filtrate generation,carrying of cuttings,fluid lubricity,and clay/shale stability are explained in detail.The mechanisms,impacts,and advances achieved when SPs are added to drilling fluids are also described.The typical challenges encountered by SPs when deployed in drilling fluids and their advantages and drawbacks are also discussed.Economic issues also impact the applications of SPs in drilling fluids.Consequently,the cost of the most relevant SPs,and the monomers used in their synthesis,are assessed.Environmental impacts of SPs when deployed in drilling fluids,and their manufacturing processes are identified,together with advances in SP-treatment methods aimed at reducing those impacts.Recommendations for required future research addressing SP property and performance gaps are provided. 展开更多
关键词 Synthetic versus natural polymers Nanopolymers drilling fluid additives LUBRICITY Clay swelling Hole cleaning
下载PDF
Formation damage mechanism and control strategy of the compound function of drilling fluid and fracturing fluid in shale reservoirs
19
作者 SUN Jinsheng XU Chengyuan +6 位作者 KANG Yili JING Haoran ZHANG Jie YANG Bin YOU Lijun ZHANG Hanshi LONG Yifu 《Petroleum Exploration and Development》 SCIE 2024年第2期430-439,共10页
For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture ... For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection. 展开更多
关键词 shale oil and gas drilling fluid fracturing fluid stress-sensitive solid blocking formation damage reservoir protection
下载PDF
Intelligent risk identification of gas drilling based on nonlinear classification network
20
作者 Wen-He Xia Zong-Xu Zhao +4 位作者 Cheng-Xiao Li Gao Li Yong-Jie Li Xing Ding Xiang-Dong Chen 《Petroleum Science》 SCIE EI CSCD 2023年第5期3074-3084,共11页
During the transient process of gas drilling conditions,the monitoring data often has obvious nonlinear fluctuation features,which leads to large classification errors and time delays in the commonly used intelligent ... During the transient process of gas drilling conditions,the monitoring data often has obvious nonlinear fluctuation features,which leads to large classification errors and time delays in the commonly used intelligent classification models.Combined with the structural features of data samples obtained from monitoring while drilling,this paper uses convolution algorithm to extract the correlation features of multiple monitoring while drilling parameters changing with time,and applies RBF network with nonlinear classification ability to classify the features.In the training process,the loss function component based on distance mean square error is used to effectively adjust the best clustering center in RBF.Many field applications show that,the recognition accuracy of the above nonlinear classification network model for gas production,water production and drill sticking is 97.32%,95.25%and 93.78%.Compared with the traditional convolutional neural network(CNN)model,the network structure not only improves the classification accuracy of conditions in the transition stage of conditions,but also greatly advances the time points of risk identification,especially for the three common risk identification points of gas production,water production and drill sticking,which are advanced by 56,16 and 8 s.It has won valuable time for the site to take correct risk disposal measures in time,and fully demonstrated the applicability of nonlinear classification neural network in oil and gas field exploration and development. 展开更多
关键词 Gas drilling Intelligent identification of drilling risk Nonlinear classification RBF Neural Network K-means algorithm
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部