风蚀监测可反映风沙运动规律,集沙仪是风蚀监测的必备仪器,而以往研究大多在沙漠或沙地开展,较少涉及黑土农田。本研究基于BSNE(Big Spring Number Eight)集沙仪,将采沙盒底部阻风结构中的18目孔径筛网改进为逆向百叶窗式的阻风挡板,采...风蚀监测可反映风沙运动规律,集沙仪是风蚀监测的必备仪器,而以往研究大多在沙漠或沙地开展,较少涉及黑土农田。本研究基于BSNE(Big Spring Number Eight)集沙仪,将采沙盒底部阻风结构中的18目孔径筛网改进为逆向百叶窗式的阻风挡板,采用模拟试验对比分析BSNE集沙仪和改进后rBSNE(Revised Spring Number Eight)集沙仪的保沙和集沙能力,并将其应用于野外黑土农田风蚀监测。研究结果表明:与BSNE集沙仪相比,rBSNE集沙仪降低了小粒级颗粒的损失率,当风速低于20 m·s^(-1)时,对<0.25 mm粒径的土壤颗粒的损失率显著降低74.3%~87.1%;当风速达到20 m·s^(-1)时,对所有试验粒径的土壤颗粒的损失率显著降低46.9%~74.3%。与BSNE集沙仪相比,rBSNE集沙仪有助于对小粒级颗粒的收集,当风速低于20 m·s^(-1)时,对粒径为<0.5 mm的集沙量显著增加了9.0%~44.0%;当风速达到20 m·s^(-1)时,对所有试验粒径的集沙量均显著增加7.3%~34.4%。野外监测结果显示风蚀输沙量随高度增加呈指数函数递减趋势,说明rBSNE集沙仪可应用于黑土农田风蚀的监测。展开更多
Background Many phenotypes in animal breeding are derived from incomplete measures,especially if they are challenging or expensive to measure precisely.Examples include time-dependent traits such as reproductive statu...Background Many phenotypes in animal breeding are derived from incomplete measures,especially if they are challenging or expensive to measure precisely.Examples include time-dependent traits such as reproductive status,or lifespan.Incomplete measures for these traits result in phenotypes that are subject to left-,interval-and rightcensoring,where phenotypes are only known to fall below an upper bound,between a lower and upper bound,or above a lower bound respectively.Here we compare three methods for deriving phenotypes from incomplete data using age at first elevation(>1 ng/mL)in blood plasma progesterone(AGEP4),which generally coincides with onset of puberty,as an example trait.Methods We produced AGEP4 phenotypes from three blood samples collected at about 30-day intervals from approximately 5,000 Holstein–Friesian or Holstein–Friesian×Jersey cross-bred dairy heifers managed in 54 seasonal-calving,pasture-based herds in New Zealand.We used these actual data to simulate 7 different visit scenarios,increasing the extent of censoring by disregarding data from one or two of the three visits.Three methods for deriving phenotypes from these data were explored:1)ordinal categorical variables which were analysed using categorical threshold analysis;2)continuous variables,with a penalty of 31 d assigned to right-censored phenotypes;and 3)continuous variables,sampled from within a lower and upper bound using a data augmentation approach.Results Credibility intervals for heritability estimations overlapped across all methods and visit scenarios,but estimated heritabilities tended to be higher when left censoring was reduced.For sires with at least 5 daughters,the correlations between estimated breeding values(EBVs)from our three-visit scenario and each reduced data scenario varied by method,ranging from 0.65 to 0.95.The estimated breed effects also varied by method,but breed differences were smaller as phenotype censoring increased.Conclusion Our results indicate that using some methods,phenotypes derived from one observation per offspring for a time-dependent trait such as AGEP4 may provide comparable sire rankings to three observations per offspring.This has implications for the design of large-scale phenotyping initiatives where animal breeders aim to estimate variance parameters and estimated breeding values(EBVs)for phenotypes that are challenging to measure or prohibitively expensive.展开更多
文摘风蚀监测可反映风沙运动规律,集沙仪是风蚀监测的必备仪器,而以往研究大多在沙漠或沙地开展,较少涉及黑土农田。本研究基于BSNE(Big Spring Number Eight)集沙仪,将采沙盒底部阻风结构中的18目孔径筛网改进为逆向百叶窗式的阻风挡板,采用模拟试验对比分析BSNE集沙仪和改进后rBSNE(Revised Spring Number Eight)集沙仪的保沙和集沙能力,并将其应用于野外黑土农田风蚀监测。研究结果表明:与BSNE集沙仪相比,rBSNE集沙仪降低了小粒级颗粒的损失率,当风速低于20 m·s^(-1)时,对<0.25 mm粒径的土壤颗粒的损失率显著降低74.3%~87.1%;当风速达到20 m·s^(-1)时,对所有试验粒径的土壤颗粒的损失率显著降低46.9%~74.3%。与BSNE集沙仪相比,rBSNE集沙仪有助于对小粒级颗粒的收集,当风速低于20 m·s^(-1)时,对粒径为<0.5 mm的集沙量显著增加了9.0%~44.0%;当风速达到20 m·s^(-1)时,对所有试验粒径的集沙量均显著增加7.3%~34.4%。野外监测结果显示风蚀输沙量随高度增加呈指数函数递减趋势,说明rBSNE集沙仪可应用于黑土农田风蚀的监测。
基金funded by New Zealand dairy farmers through Dairy NZ Inc. and by the New Zealand Ministry of Business,Innovation and Employment (DRCX1302)support was kindly received from LIC and CRV
文摘Background Many phenotypes in animal breeding are derived from incomplete measures,especially if they are challenging or expensive to measure precisely.Examples include time-dependent traits such as reproductive status,or lifespan.Incomplete measures for these traits result in phenotypes that are subject to left-,interval-and rightcensoring,where phenotypes are only known to fall below an upper bound,between a lower and upper bound,or above a lower bound respectively.Here we compare three methods for deriving phenotypes from incomplete data using age at first elevation(>1 ng/mL)in blood plasma progesterone(AGEP4),which generally coincides with onset of puberty,as an example trait.Methods We produced AGEP4 phenotypes from three blood samples collected at about 30-day intervals from approximately 5,000 Holstein–Friesian or Holstein–Friesian×Jersey cross-bred dairy heifers managed in 54 seasonal-calving,pasture-based herds in New Zealand.We used these actual data to simulate 7 different visit scenarios,increasing the extent of censoring by disregarding data from one or two of the three visits.Three methods for deriving phenotypes from these data were explored:1)ordinal categorical variables which were analysed using categorical threshold analysis;2)continuous variables,with a penalty of 31 d assigned to right-censored phenotypes;and 3)continuous variables,sampled from within a lower and upper bound using a data augmentation approach.Results Credibility intervals for heritability estimations overlapped across all methods and visit scenarios,but estimated heritabilities tended to be higher when left censoring was reduced.For sires with at least 5 daughters,the correlations between estimated breeding values(EBVs)from our three-visit scenario and each reduced data scenario varied by method,ranging from 0.65 to 0.95.The estimated breed effects also varied by method,but breed differences were smaller as phenotype censoring increased.Conclusion Our results indicate that using some methods,phenotypes derived from one observation per offspring for a time-dependent trait such as AGEP4 may provide comparable sire rankings to three observations per offspring.This has implications for the design of large-scale phenotyping initiatives where animal breeders aim to estimate variance parameters and estimated breeding values(EBVs)for phenotypes that are challenging to measure or prohibitively expensive.