Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit ...Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit their applications beyond the near-infrared regime.In this work,we theoretically present a new mechanism to enhance the photonic SHE by taking advantage of SiC-supported surface phonon resonance(SPhR)in the mid-infrared regime.The transverse displacement of photonic SHE is very sensitive to the wavelength of incident light and the thickness of SiC layer.Under the optimal parameter setup,the calculated largest transverse displacement of SiC-based SPhR structure reaches up to 163.8 ym,which is much larger than the condition of SPR.Moreover,an NO_(2) gas sensor based on the SPhR-enhanced photonic SHE is theoretically proposed with the superior sensing performance.Both the intensity and angle sensitivity of this sensor can be effectively manipulated by varying the damping rate of SiC.The results may provide a promising paradigm to enhance the photonic SHE in the mid-infrared region and open up new opportunity of highly sensitive refractive index sensors.展开更多
The cavity-mode resonance effect could result in significant degradation of the shielding effectiveness (SE) of a shielding enclosure around its resonance frequencies. In this paper, the influence of coated wall los...The cavity-mode resonance effect could result in significant degradation of the shielding effectiveness (SE) of a shielding enclosure around its resonance frequencies. In this paper, the influence of coated wall loss on the suppression of the resonance effect is investigated. For this purpose, an equivalent circuit model is employed to analyze the SE of an apertured rectangular cavity coated with an inside layer of resistive material. The model is developed by extending Robinson's equivalent circuit model through incorporating the effect of the wall loss into both the propagation constant and the characteristic impedance of the waveguide. Calculation results show that the wall loss could lead to great improvement on the SE for frequencies near the resonance but almost no effect on the SE for frequencies far away from the resonance.展开更多
Herein,we report a novel ternary material comprised of Ag nanoparticles and carbon quantum dots(CDs),which are co-loaded using 2D Bi4Ti3O12(BIT)sheets.In this system,Ag can be applied as excited electron-hole pairs in...Herein,we report a novel ternary material comprised of Ag nanoparticles and carbon quantum dots(CDs),which are co-loaded using 2D Bi4Ti3O12(BIT)sheets.In this system,Ag can be applied as excited electron-hole pairs in the Bi4Ti3O12 by transferring the plasmonic energy from the metal to the semiconductor.The surface plasmon resonance of Ag can promote the electron transfer properties of the CDs,thereby improving the separation efficiency of the electron-hole pairs.Meanwhile,the CDs can act as an electron buffer to decrease the recombination rate of the electron hole.Moreover,CDs are prepared using a biomaterial,which can provide a chemical group to enhance the electron transfer and connection.The synergistic effects of CDs,Ag,and BIT enable the design of a photocatalytic application with a remarkably improved efficiency and operational stability.展开更多
This paper adopted a semi-analytical method based on eigenfunction matching to solve the problem of sharp resonance of cylindrical structures with a moonpool that has a restricted entrance. To eliminate the sharp reso...This paper adopted a semi-analytical method based on eigenfunction matching to solve the problem of sharp resonance of cylindrical structures with a moonpool that has a restricted entrance. To eliminate the sharp resonance and to measure the viscous effect, a quadratic dissipation is introduced by assuming an additional dissipative disk at the moonpool entrance. The fluid domain is divided into five cylindrical subdomains, and the velocity potential in each subdomain is obtained by meeting the Laplace equation as well as the boundary conditions. The free-surface elevation at the center of the moonpool, along with the pressure and velocity at the restricted entrance for first-order wave are evaluated. By choosing appropriate dissipation coefficients, the free-surface elevation calculated at the center of the moonpool is in coincidence with the measurements in model tests both at the peak period and amplitude at resonance. It is shown that the sharp resonance in the potential flow theory can be eliminated and the viscous effect can be estimated with a simple method in some provided hydrodynamic models.展开更多
Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical...Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical temperature(T_(c)),and quasiparticle density of states(QDOS) distribution, however, deviate from the classical BCS theory due to the disorder effects. The Usadel equation, which takes account of elastic scattering, non-elastic scattering, and electro–phonon coupling,can be applied to explain and describe these deviations. This paper presents numerical simulations of the disorder effects based on the Usadel equation to investigate their effects on the △, Tc, QDOS distribution, and complex conductivity of the NbTiN film. Furthermore, NbTiN superconducting resonators with coplanar waveguide(CPW) structures are fabricated and characterized at different temperatures to validate our numerical simulations. The pair-breaking parameter α and the critical temperature in the pure state T_(c)^(P) of our NbTiN film are determined from the experimental results and numerical simulations. This study has significant implications for the development of low-temperature detectors made of disordered superconducting materials.展开更多
Based on the beam wave synchronous interaction in transverse and longitudinal directions at the same time and starting from Maxwell’s equation and linear Vlasov equation, the beam–wave interaction ‘hot’ dispersion...Based on the beam wave synchronous interaction in transverse and longitudinal directions at the same time and starting from Maxwell’s equation and linear Vlasov equation, the beam–wave interaction ‘hot’ dispersion equation considering both cyclotron resonance and Cherenkov resonance in a staggered double metallic grating traveling wave tube is deduced.Through the reasonable selection for geometric and electrical parameters, the numerical calculation and analysis of the ‘hot’ dispersion equation shows that the beam–wave interaction gain and frequency band with the cyclotron resonance enhancement effect are higher than those with only Cherenkov resonance radiation.展开更多
Based on the nonlocal strain gradient theory(NSGT), a model is proposed for an axially moving nanobeam with two kinds of scale effects. The internal resonanceaccompanied fundamental harmonic response of the external e...Based on the nonlocal strain gradient theory(NSGT), a model is proposed for an axially moving nanobeam with two kinds of scale effects. The internal resonanceaccompanied fundamental harmonic response of the external excitation frequency in the vicinities of the first and second natural frequencies is studied by adopting the multivariate Lindstedt-Poincaré(L-P) method. Based on the root discriminant of the frequencyamplitude equation under internal resonance conditions, theoretical analyses are performed to investigate the scale effects of the resonance region and the critical external excitation amplitude. Numerical results show that the region of internal resonance is related to the amplitude of the external excitation. Particularly, the internal resonance disappears after a certain critical value of the external excitation amplitude is reached.It is also shown that the scale parameters, i.e., the nonlocal parameters and the material characteristic length parameters, respectively, reduce and increase the critical amplitude,leading to a promotion or suppression of the occurrence of internal resonance. In addition,the scale parameters affect the size of the enclosed loop of the bifurcated solution curves as well by changing their intersection, divergence, or tangency.展开更多
We use linear entropy of an exact quantum state to study the entanglement between internal electronic states and external motional states for a two-level atom held in an amplitude-modulated and tilted optical lattice....We use linear entropy of an exact quantum state to study the entanglement between internal electronic states and external motional states for a two-level atom held in an amplitude-modulated and tilted optical lattice. Starting from an unentangled initial state associated with the regular 'island' of classical phase space, it is demonstrated that the quantum resonance leads to entanglement generation, the chaotic parameter region results in the increase of the generation speed, and the symmetries of the initial probability distribution determine the final degree of entanglement. The entangled initial states are associated with the classical 'chaotic sea', which do not affect the final entanglement degree for the same initial symmetry. The results may be useful in engineering quantum dynamics for quantum information processing.展开更多
Quantum interference plays an important role in tuning the transport property of nano-devices. Using the non- equilibrium Green's Function method in combination with density functional theory, we investigate the infl...Quantum interference plays an important role in tuning the transport property of nano-devices. Using the non- equilibrium Green's Function method in combination with density functional theory, we investigate the influence to the transport property of a CO molecule adsorbed on one edge of a zigzag graphene nanoribbon device. Our results show that the CO molecule-adsorbed zigzag graphene nanoribbon devices can exhibit the Fano resonance phenomenon. Moreover, the distance between CO molecules and zigzag graphene nanoribbons is closely related to the energy sites of the Fano resonance. Our theoretical analyses indicate that the Fano resonance would be attributed to the interaction between CO molecules and the edge of the zigzag graphene nanoribbon device, which results in the localization of electrons and significantly changes the transmission spectrum.展开更多
The effect of signal modulating noise in bistable stochastic resonance systems was studied theoretically and experimentally. A mathematical analysis was made on the bistable stochastic resonance model with small syste...The effect of signal modulating noise in bistable stochastic resonance systems was studied theoretically and experimentally. A mathematical analysis was made on the bistable stochastic resonance model with small system parameters. An analogue circuit was designed to perform the effect. The effect of signal modulating noise was shown in the analog simulation experiment. The analog experiment was conducted for two sinusoidal signals with different frequencies. The results show that there are a sinusoidal component corresponding to the input sinusoidal signal and a noise component presented as a Wiener process corresponding to the input white noise in the system output. By properly selecting system parameters, the effect of signal modulating noise can be manifested in the system output.展开更多
A monolithic integrated two-section distributed feedback(TS-DFB)semiconductor laser for high-speed direct modulation is proposed and analyzed theoretically.The grating structure of the TS-DFB laser is designed by the ...A monolithic integrated two-section distributed feedback(TS-DFB)semiconductor laser for high-speed direct modulation is proposed and analyzed theoretically.The grating structure of the TS-DFB laser is designed by the reconstructionequivalent-chirp(REC)technique,which can reduce the manufacturing cost and difficulty,and achieve high wavelength controlling accuracy.The detuned loading effect and the photon-photon resonance(PPR)effect are utilized to enhance the modulation bandwidth of the TS-DFB laser,exceeding 37 GHz,while that of the conventional one-section DFB laser is only 16 GHz.When the bit rate of the non-return-to-zero(NRZ)signal reaches 55 Gb/s,a clear eye diagram with large opening can still be obtained.These results show that the proposed method can enhance the modulation bandwidth of DFB laser significantly.展开更多
The study has shown that the shear component of the vertical integrated kinetic energy(Ks)over the box(40oE-100oE,0-20oN)can be used to measure the intensity of the South Asian summer monsoon(SASM).Based on its value ...The study has shown that the shear component of the vertical integrated kinetic energy(Ks)over the box(40oE-100oE,0-20oN)can be used to measure the intensity of the South Asian summer monsoon(SASM).Based on its value averaged between June and August,the SASM can be divided into strong and weak monsoon episodes.Between1958 and 2018,there existed 16(16)strong(weak)monsoon episodes.Based on the calendar year,the relationship between the SASM and ENSO episodes can be grouped into six patterns:weak monsoon-El Ni?o(WM-EN),normal monsoon-El Ni?o(NM-EN),weak monsoon-non ENSO(WM-NE),strong monsoon-La Ni?a(SM-LN),normal monsoon-La Ni?a(NM-LN)and strong monsoon-non ENSO(SM-NE).Previous studies suggest that the WM-EN and SM-LN patterns reflect the correlated relationship between the SASM and El Ni?o/Southern Oscillation(ENSO)events.Therefore,we name these two strongly coupled categories WM-EN and SM-LN as the resonance effect.Two important circulations,i.e.,Walker circulation(WC)and zonal Asian monsoon circulation(MC),in the vertical plane are found to be not always correlated.The MC is controlled by thermal gradients between the Asian landmass and the tropical Indian Ocean,while the WC associated with ENSO events is primarily the east-west thermal gradient between the tropical South Pacific and the tropical Indian Ocean.Furthermore,the gradient directions caused by different surface thermal conditions are different.The main factor for the resonance effect is the phenomenon that the symbols of SSTA in the tropical Indian Ocean and the equatorial eastern Pacific are the same,but are opposite to that of the SSTA near the maritime continent.展开更多
Two sets of gold nanoparticles (NP) embedded in amorphous BaTiO3 films were prepared by sol-gel method using spin coating. Sample (1) is having BaTiO3 sol with 0.025 gm of Chloroauric acid dissolved in 10 ml of propan...Two sets of gold nanoparticles (NP) embedded in amorphous BaTiO3 films were prepared by sol-gel method using spin coating. Sample (1) is having BaTiO3 sol with 0.025 gm of Chloroauric acid dissolved in 10 ml of propan-2-ol, while sample (2) is having 0.086 gm of Chloroauric acid in the same amount of propan-2-ol. The films have been deposited on various substrates like borosilicate glass and fused silica. TEM images show that the particles are of 5 and 10 nm in size for the two set of samples, and some are having elongated morphology. Optical absorption properties of these films reveal the substrate and size effect on localised surface plasmon resonance (SPR). It shows a marginal red shift in the plasmon resonance peak from 414 nm to 420 nm in the case of sample (1) and 566 nm to 568 nm for sample (2) as the substrate changed from borosilicate glass to fused silica. It also shows red shift in Plasmon peak as the size increases from 5 to 10 nm and coincides with Mie explanation for the shift with size.展开更多
Shape resonances of electron-molecule system formed in the low-energy electron attachment to four low-lying conformers of serine (serine 1, serine 2, serine 3, and serine 4) in gas phase are investigated using the q...Shape resonances of electron-molecule system formed in the low-energy electron attachment to four low-lying conformers of serine (serine 1, serine 2, serine 3, and serine 4) in gas phase are investigated using the quantum scattering method with the non-empirical model potentials in single-center expansion. In the attachment energy range of 0-10 eV, three shape resonances for serine 1, serine 2, and serine 4 and four shape resonances for serine 3 are predicted. The one-dimensional potential energy curves of the temporary negative ions of electron-serine are calculated to explore the correlations between the shape resonance and the bond cleavage. The bond-cleavage selectivity of the different resonant states for a certain conformer is demonstrated, and the recent experimental results about the dissociative electron attachment to serine are interpreted on the basis of present calculations.展开更多
In this paper, modifications to the finite-difference time-domain(FD-TD) method for modeling microwave pulse coupling into a slot, which is much narrower than one conventional FD-TD cell, are discussed. The coupling p...In this paper, modifications to the finite-difference time-domain(FD-TD) method for modeling microwave pulse coupling into a slot, which is much narrower than one conventional FD-TD cell, are discussed. The coupling process of microwave pulse into a slot is studied by using the modified FD-TD method, and the dependence of microwave coupling on slot sizes, the carrier frequencies and the polarization directions of the incident waves is analysed. Resonant and enhancement effects which occur in this process are observed. The condition at which the resonant effect takes place is also presented.展开更多
The resonance light-scattering (RLS) of human serum albumin (HSA) and bovine serum albumin (BSA) is reported for the first time, and applied to study photochemical reaction of HSA and BSA. The fact of photocrosslinkin...The resonance light-scattering (RLS) of human serum albumin (HSA) and bovine serum albumin (BSA) is reported for the first time, and applied to study photochemical reaction of HSA and BSA. The fact of photocrosslinking self-association effect in HSA and BSA solutions is identified by the enhancement of RLS. The fluorescence quenching at about 350 nm and 700 nm proves that tryptophan (Trp) residues are one of the photochemical activity sites in HSA and BSA molecules. The Rayleigh scattering (RS) spectra of HSA and BSA that were neglected in fluorescence spectra before are found at about 296 nm, 592 nm and 888 nm for the first time, and are of adventageous to studying the aggregation of HSA or BSA. The possible photochemical reaction mechanism is also proposed.展开更多
Pyrolysis has the potential of transforming waste into recyclable products. Pyrolytic carbon black (PCB) is one of the most important products from the pyrolysis of used tires. Techniques for surface modifications of ...Pyrolysis has the potential of transforming waste into recyclable products. Pyrolytic carbon black (PCB) is one of the most important products from the pyrolysis of used tires. Techniques for surface modifications of PCB have been developed. One of the most significant applications for modified PCB is to reinforce the rubber matrix to obtain high added values. The transverse relaxation and the chain dynamics of vulcanized rubber networks with PCB and modified PCB were studied and compared with those of the commercial carbon blacks using selective 1H transverse relaxation (T2) experiments and dipolar correlation effect (DCE) experiments on the stimulated echo. Demineralization and coupling agent modification not only intensified the interactions between the modified PCB and the neighboring polyisoprene chains, but also increased the chemical cross-link density of the vulcanized rubber with modified PCB. The mechanical testing of the rubbers with different kinds of carbon blacks showed that the maximum strain of the rubber with modified PCB was improved greatly. The mechanical testing results confirmed the conclusion obtained by nuclear magnetic resonance (NMR). PCB modified by the demineralization and NDZ-105 titanate coupling agent could be used to replace the commercial semi-reinforcing carbon black.展开更多
Stochastic resonance (SR) has been proved to be an effective approach to extract weak signals overwhelmed in noise. However, the detection effect of current SR models is still unsatisfactory. Here, a coupled tri-sta...Stochastic resonance (SR) has been proved to be an effective approach to extract weak signals overwhelmed in noise. However, the detection effect of current SR models is still unsatisfactory. Here, a coupled tri-stable stochastic resonance (CTSSR) model is proposed to further increase the output signal-to-noise ratio (SNR) and improve the detection effect of SR. The effects of parameters a, b, c, and r in the proposed resonance system on the SNR are studied, by which we determine a set of parameters that is relatively optimal to implement a comparison with other classical SR models. Numerical experiment results indicate that this proposed model performs better in weak signal detection applications than the classical ones with merits of higher output SNR and better anti-noise capability.展开更多
The model of a "spring-mass" resonator periodically attached to a piezoelectric/elastic phononic crystal(PC) nanobeam with surface effects is proposed, and the corresponding calculation method of the band st...The model of a "spring-mass" resonator periodically attached to a piezoelectric/elastic phononic crystal(PC) nanobeam with surface effects is proposed, and the corresponding calculation method of the band structures is formulized and displayed by introducing the Euler beam theory and the surface piezoelectricity theory to the plane wave expansion(PWE) method. In order to reveal the unique wave propagation characteristics of such a model, the band structures of locally resonant(LR) elastic PC Euler nanobeams with and without resonators, the band structures of LR piezoelectric PC Euler nanobeams with and without resonators, as well as the band structures of LR elastic/piezoelectric PC Euler nanobeams with resonators attached on PZT-4, with resonators attached on epoxy, and without resonators are compared. The results demonstrate that adding resonators indeed plays an active role in opening and widening band gaps. Moreover, the influence rules of different parameters on the band gaps of LR elastic/piezoelectric PC Euler nanobeams with resonators attached on epoxy are discussed, which will play an active role in the further realization of active control of wave propagations.展开更多
A new resonance scattering method was proposed for the determination of chlorite, basing on the resonance scattering effect of rhodamine dye. In HCl-sodium acetate buffer solution, chlorite oxidizes 1- into 12 and the...A new resonance scattering method was proposed for the determination of chlorite, basing on the resonance scattering effect of rhodamine dye. In HCl-sodium acetate buffer solution, chlorite oxidizes 1- into 12 and the reaction of 12 and excess 1- results in If. It is respectively combined with rhodaminc dyes, including rhodamine B (RhB), butyl rhodamine B (b-RhB), rhodamine G (RhG) and rhodamine S (RhS), to form association complex particles, which exhibit stronger resonance scattering (RS) effect at 400 nm. The chlorite concentration of ClO2 in the range of 0.00726-0.218 μg/ml, 0.0102-0.292 μg/ml, 0.00726-0.145 μg/ml and 0.0290- 0.174 μg/ml is respectively linear to the RS intensity of association complex particle systems at 400 nm for the RhB, b-RhB, RhG and RhS. The detection limits of the four systems were respectively 0.00436, 0.00652, 0.00580 and 0.01450μg/ml ClO2^-. In the four systems, the RhB system possesses good stability and high sensitivity. It has been applied to the analysis of chlorite in wastewater with satisfactory results.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.12175107)the Natural Science Foundation of Nanjing Vocational University of Industry Technology (Grant No.YK22-02-08)+2 种基金the Qing Lan Project of Jiangsu Provincethe Natural Science Foundation of Jiangsu Province of China (Grant No.BK20230347)the Fund from the Research Center of Industrial Perception and Intelligent Manufacturing Equipment Engineering of Jiangsu Province,China (Grant No.ZK21-05-09)。
文摘Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit their applications beyond the near-infrared regime.In this work,we theoretically present a new mechanism to enhance the photonic SHE by taking advantage of SiC-supported surface phonon resonance(SPhR)in the mid-infrared regime.The transverse displacement of photonic SHE is very sensitive to the wavelength of incident light and the thickness of SiC layer.Under the optimal parameter setup,the calculated largest transverse displacement of SiC-based SPhR structure reaches up to 163.8 ym,which is much larger than the condition of SPR.Moreover,an NO_(2) gas sensor based on the SPhR-enhanced photonic SHE is theoretically proposed with the superior sensing performance.Both the intensity and angle sensitivity of this sensor can be effectively manipulated by varying the damping rate of SiC.The results may provide a promising paradigm to enhance the photonic SHE in the mid-infrared region and open up new opportunity of highly sensitive refractive index sensors.
基金supported by the National Natural Science Foundation of China(Grant No.51037001)
文摘The cavity-mode resonance effect could result in significant degradation of the shielding effectiveness (SE) of a shielding enclosure around its resonance frequencies. In this paper, the influence of coated wall loss on the suppression of the resonance effect is investigated. For this purpose, an equivalent circuit model is employed to analyze the SE of an apertured rectangular cavity coated with an inside layer of resistive material. The model is developed by extending Robinson's equivalent circuit model through incorporating the effect of the wall loss into both the propagation constant and the characteristic impedance of the waveguide. Calculation results show that the wall loss could lead to great improvement on the SE for frequencies near the resonance but almost no effect on the SE for frequencies far away from the resonance.
基金financially supported by the National Natural Science Foundation of China(U1510126,21676115)the Natural Science Foundation of Jiangsu Provincial(BK20180884)~~
文摘Herein,we report a novel ternary material comprised of Ag nanoparticles and carbon quantum dots(CDs),which are co-loaded using 2D Bi4Ti3O12(BIT)sheets.In this system,Ag can be applied as excited electron-hole pairs in the Bi4Ti3O12 by transferring the plasmonic energy from the metal to the semiconductor.The surface plasmon resonance of Ag can promote the electron transfer properties of the CDs,thereby improving the separation efficiency of the electron-hole pairs.Meanwhile,the CDs can act as an electron buffer to decrease the recombination rate of the electron hole.Moreover,CDs are prepared using a biomaterial,which can provide a chemical group to enhance the electron transfer and connection.The synergistic effects of CDs,Ag,and BIT enable the design of a photocatalytic application with a remarkably improved efficiency and operational stability.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51509048,51679044 and11572094)
文摘This paper adopted a semi-analytical method based on eigenfunction matching to solve the problem of sharp resonance of cylindrical structures with a moonpool that has a restricted entrance. To eliminate the sharp resonance and to measure the viscous effect, a quadratic dissipation is introduced by assuming an additional dissipative disk at the moonpool entrance. The fluid domain is divided into five cylindrical subdomains, and the velocity potential in each subdomain is obtained by meeting the Laplace equation as well as the boundary conditions. The free-surface elevation at the center of the moonpool, along with the pressure and velocity at the restricted entrance for first-order wave are evaluated. By choosing appropriate dissipation coefficients, the free-surface elevation calculated at the center of the moonpool is in coincidence with the measurements in model tests both at the peak period and amplitude at resonance. It is shown that the sharp resonance in the potential flow theory can be eliminated and the viscous effect can be estimated with a simple method in some provided hydrodynamic models.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11925304 and 12020101002)the Chinese Academy of Sciences Program(Grant No.GJJSTD20210002).
文摘Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical temperature(T_(c)),and quasiparticle density of states(QDOS) distribution, however, deviate from the classical BCS theory due to the disorder effects. The Usadel equation, which takes account of elastic scattering, non-elastic scattering, and electro–phonon coupling,can be applied to explain and describe these deviations. This paper presents numerical simulations of the disorder effects based on the Usadel equation to investigate their effects on the △, Tc, QDOS distribution, and complex conductivity of the NbTiN film. Furthermore, NbTiN superconducting resonators with coplanar waveguide(CPW) structures are fabricated and characterized at different temperatures to validate our numerical simulations. The pair-breaking parameter α and the critical temperature in the pure state T_(c)^(P) of our NbTiN film are determined from the experimental results and numerical simulations. This study has significant implications for the development of low-temperature detectors made of disordered superconducting materials.
基金supported by National Natural Science Foundation of China(No.61671431)
文摘Based on the beam wave synchronous interaction in transverse and longitudinal directions at the same time and starting from Maxwell’s equation and linear Vlasov equation, the beam–wave interaction ‘hot’ dispersion equation considering both cyclotron resonance and Cherenkov resonance in a staggered double metallic grating traveling wave tube is deduced.Through the reasonable selection for geometric and electrical parameters, the numerical calculation and analysis of the ‘hot’ dispersion equation shows that the beam–wave interaction gain and frequency band with the cyclotron resonance enhancement effect are higher than those with only Cherenkov resonance radiation.
基金Project supported by the National Natural Science Foundation of China(Nos.11702036,11602204,and 11502218)。
文摘Based on the nonlocal strain gradient theory(NSGT), a model is proposed for an axially moving nanobeam with two kinds of scale effects. The internal resonanceaccompanied fundamental harmonic response of the external excitation frequency in the vicinities of the first and second natural frequencies is studied by adopting the multivariate Lindstedt-Poincaré(L-P) method. Based on the root discriminant of the frequencyamplitude equation under internal resonance conditions, theoretical analyses are performed to investigate the scale effects of the resonance region and the critical external excitation amplitude. Numerical results show that the region of internal resonance is related to the amplitude of the external excitation. Particularly, the internal resonance disappears after a certain critical value of the external excitation amplitude is reached.It is also shown that the scale parameters, i.e., the nonlocal parameters and the material characteristic length parameters, respectively, reduce and increase the critical amplitude,leading to a promotion or suppression of the occurrence of internal resonance. In addition,the scale parameters affect the size of the enclosed loop of the bifurcated solution curves as well by changing their intersection, divergence, or tangency.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11175064 and 11475060the Construct Program of the National Key Discipline of Chinathe Hunan Provincial Innovation Foundation for Postgraduates under Grant No CX2014B195
文摘We use linear entropy of an exact quantum state to study the entanglement between internal electronic states and external motional states for a two-level atom held in an amplitude-modulated and tilted optical lattice. Starting from an unentangled initial state associated with the regular 'island' of classical phase space, it is demonstrated that the quantum resonance leads to entanglement generation, the chaotic parameter region results in the increase of the generation speed, and the symmetries of the initial probability distribution determine the final degree of entanglement. The entangled initial states are associated with the classical 'chaotic sea', which do not affect the final entanglement degree for the same initial symmetry. The results may be useful in engineering quantum dynamics for quantum information processing.
基金Supported by the National Natural Science Foundation of China under Grant No 21673296the Science and technology Plan of Hunan Province under Grant No 2015RS4002the Hunan Provincial Natural Science Foundation under Grant No 2017JJ3063
文摘Quantum interference plays an important role in tuning the transport property of nano-devices. Using the non- equilibrium Green's Function method in combination with density functional theory, we investigate the influence to the transport property of a CO molecule adsorbed on one edge of a zigzag graphene nanoribbon device. Our results show that the CO molecule-adsorbed zigzag graphene nanoribbon devices can exhibit the Fano resonance phenomenon. Moreover, the distance between CO molecules and zigzag graphene nanoribbons is closely related to the energy sites of the Fano resonance. Our theoretical analyses indicate that the Fano resonance would be attributed to the interaction between CO molecules and the edge of the zigzag graphene nanoribbon device, which results in the localization of electrons and significantly changes the transmission spectrum.
基金Project (10276032) supportedjointly by the National Natural Science Foundation of China and by the Science Foundationof China Academy of Engineering Physics NSAFproject(2005038228) supported by Postdoctoral Science Foundation of China projectsupported by the Postdoctoral Science Foundation of Central South University(2005)
文摘The effect of signal modulating noise in bistable stochastic resonance systems was studied theoretically and experimentally. A mathematical analysis was made on the bistable stochastic resonance model with small system parameters. An analogue circuit was designed to perform the effect. The effect of signal modulating noise was shown in the analog simulation experiment. The analog experiment was conducted for two sinusoidal signals with different frequencies. The results show that there are a sinusoidal component corresponding to the input sinusoidal signal and a noise component presented as a Wiener process corresponding to the input white noise in the system output. By properly selecting system parameters, the effect of signal modulating noise can be manifested in the system output.
基金the National Key Research and Development Program of China(Grant No.2020YFB2205804)the National Natural Science Foundation of China(Grant Nos.61974165 and Grant 61975075)the National Natural Science Foundation of China for the Youth,China(Grant No.62004105)。
文摘A monolithic integrated two-section distributed feedback(TS-DFB)semiconductor laser for high-speed direct modulation is proposed and analyzed theoretically.The grating structure of the TS-DFB laser is designed by the reconstructionequivalent-chirp(REC)technique,which can reduce the manufacturing cost and difficulty,and achieve high wavelength controlling accuracy.The detuned loading effect and the photon-photon resonance(PPR)effect are utilized to enhance the modulation bandwidth of the TS-DFB laser,exceeding 37 GHz,while that of the conventional one-section DFB laser is only 16 GHz.When the bit rate of the non-return-to-zero(NRZ)signal reaches 55 Gb/s,a clear eye diagram with large opening can still be obtained.These results show that the proposed method can enhance the modulation bandwidth of DFB laser significantly.
基金Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20060503)Fund of Southern Marine Science and Engineering Guangdong Laboratory(ZJW-2019-08)+2 种基金National Key R&D Program of China(2017YFC1501802,2018YFA0605604)Project of Enhancing School with Innovation of Guangdong Ocean University(230419053)Projects(Platforms)for Construction of Topranking Disciplines of Guangdong Ocean University(231419022)
文摘The study has shown that the shear component of the vertical integrated kinetic energy(Ks)over the box(40oE-100oE,0-20oN)can be used to measure the intensity of the South Asian summer monsoon(SASM).Based on its value averaged between June and August,the SASM can be divided into strong and weak monsoon episodes.Between1958 and 2018,there existed 16(16)strong(weak)monsoon episodes.Based on the calendar year,the relationship between the SASM and ENSO episodes can be grouped into six patterns:weak monsoon-El Ni?o(WM-EN),normal monsoon-El Ni?o(NM-EN),weak monsoon-non ENSO(WM-NE),strong monsoon-La Ni?a(SM-LN),normal monsoon-La Ni?a(NM-LN)and strong monsoon-non ENSO(SM-NE).Previous studies suggest that the WM-EN and SM-LN patterns reflect the correlated relationship between the SASM and El Ni?o/Southern Oscillation(ENSO)events.Therefore,we name these two strongly coupled categories WM-EN and SM-LN as the resonance effect.Two important circulations,i.e.,Walker circulation(WC)and zonal Asian monsoon circulation(MC),in the vertical plane are found to be not always correlated.The MC is controlled by thermal gradients between the Asian landmass and the tropical Indian Ocean,while the WC associated with ENSO events is primarily the east-west thermal gradient between the tropical South Pacific and the tropical Indian Ocean.Furthermore,the gradient directions caused by different surface thermal conditions are different.The main factor for the resonance effect is the phenomenon that the symbols of SSTA in the tropical Indian Ocean and the equatorial eastern Pacific are the same,but are opposite to that of the SSTA near the maritime continent.
文摘Two sets of gold nanoparticles (NP) embedded in amorphous BaTiO3 films were prepared by sol-gel method using spin coating. Sample (1) is having BaTiO3 sol with 0.025 gm of Chloroauric acid dissolved in 10 ml of propan-2-ol, while sample (2) is having 0.086 gm of Chloroauric acid in the same amount of propan-2-ol. The films have been deposited on various substrates like borosilicate glass and fused silica. TEM images show that the particles are of 5 and 10 nm in size for the two set of samples, and some are having elongated morphology. Optical absorption properties of these films reveal the substrate and size effect on localised surface plasmon resonance (SPR). It shows a marginal red shift in the plasmon resonance peak from 414 nm to 420 nm in the case of sample (1) and 566 nm to 568 nm for sample (2) as the substrate changed from borosilicate glass to fused silica. It also shows red shift in Plasmon peak as the size increases from 5 to 10 nm and coincides with Mie explanation for the shift with size.
基金This work is supported by the National Natural Science Foundation of China (No.21303212 and No.21573209), the Ministry of Science and Technology of China (No.2013CB834602).
文摘Shape resonances of electron-molecule system formed in the low-energy electron attachment to four low-lying conformers of serine (serine 1, serine 2, serine 3, and serine 4) in gas phase are investigated using the quantum scattering method with the non-empirical model potentials in single-center expansion. In the attachment energy range of 0-10 eV, three shape resonances for serine 1, serine 2, and serine 4 and four shape resonances for serine 3 are predicted. The one-dimensional potential energy curves of the temporary negative ions of electron-serine are calculated to explore the correlations between the shape resonance and the bond cleavage. The bond-cleavage selectivity of the different resonant states for a certain conformer is demonstrated, and the recent experimental results about the dissociative electron attachment to serine are interpreted on the basis of present calculations.
文摘In this paper, modifications to the finite-difference time-domain(FD-TD) method for modeling microwave pulse coupling into a slot, which is much narrower than one conventional FD-TD cell, are discussed. The coupling process of microwave pulse into a slot is studied by using the modified FD-TD method, and the dependence of microwave coupling on slot sizes, the carrier frequencies and the polarization directions of the incident waves is analysed. Resonant and enhancement effects which occur in this process are observed. The condition at which the resonant effect takes place is also presented.
基金the National Natural Science Foundation of China ! 29961001the Foundation for Talents Striding across the Century of Guangxi
文摘The resonance light-scattering (RLS) of human serum albumin (HSA) and bovine serum albumin (BSA) is reported for the first time, and applied to study photochemical reaction of HSA and BSA. The fact of photocrosslinking self-association effect in HSA and BSA solutions is identified by the enhancement of RLS. The fluorescence quenching at about 350 nm and 700 nm proves that tryptophan (Trp) residues are one of the photochemical activity sites in HSA and BSA molecules. The Rayleigh scattering (RS) spectra of HSA and BSA that were neglected in fluorescence spectra before are found at about 296 nm, 592 nm and 888 nm for the first time, and are of adventageous to studying the aggregation of HSA or BSA. The possible photochemical reaction mechanism is also proposed.
基金Project supported by the National Natural Science Foundation of China (Nos. 20490200 and 20176051), and the Project Based Per-sonnel Exchange Program with the China Scholarship Council and the German Academic Exchange Service
文摘Pyrolysis has the potential of transforming waste into recyclable products. Pyrolytic carbon black (PCB) is one of the most important products from the pyrolysis of used tires. Techniques for surface modifications of PCB have been developed. One of the most significant applications for modified PCB is to reinforce the rubber matrix to obtain high added values. The transverse relaxation and the chain dynamics of vulcanized rubber networks with PCB and modified PCB were studied and compared with those of the commercial carbon blacks using selective 1H transverse relaxation (T2) experiments and dipolar correlation effect (DCE) experiments on the stimulated echo. Demineralization and coupling agent modification not only intensified the interactions between the modified PCB and the neighboring polyisoprene chains, but also increased the chemical cross-link density of the vulcanized rubber with modified PCB. The mechanical testing of the rubbers with different kinds of carbon blacks showed that the maximum strain of the rubber with modified PCB was improved greatly. The mechanical testing results confirmed the conclusion obtained by nuclear magnetic resonance (NMR). PCB modified by the demineralization and NDZ-105 titanate coupling agent could be used to replace the commercial semi-reinforcing carbon black.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61071025 and 61502538)
文摘Stochastic resonance (SR) has been proved to be an effective approach to extract weak signals overwhelmed in noise. However, the detection effect of current SR models is still unsatisfactory. Here, a coupled tri-stable stochastic resonance (CTSSR) model is proposed to further increase the output signal-to-noise ratio (SNR) and improve the detection effect of SR. The effects of parameters a, b, c, and r in the proposed resonance system on the SNR are studied, by which we determine a set of parameters that is relatively optimal to implement a comparison with other classical SR models. Numerical experiment results indicate that this proposed model performs better in weak signal detection applications than the classical ones with merits of higher output SNR and better anti-noise capability.
基金the National Natural Science Foundation of China(No.11847009)the Natural Science Foundation of Suzhou University of Science and Technology(No.XKQ2018007)。
文摘The model of a "spring-mass" resonator periodically attached to a piezoelectric/elastic phononic crystal(PC) nanobeam with surface effects is proposed, and the corresponding calculation method of the band structures is formulized and displayed by introducing the Euler beam theory and the surface piezoelectricity theory to the plane wave expansion(PWE) method. In order to reveal the unique wave propagation characteristics of such a model, the band structures of locally resonant(LR) elastic PC Euler nanobeams with and without resonators, the band structures of LR piezoelectric PC Euler nanobeams with and without resonators, as well as the band structures of LR elastic/piezoelectric PC Euler nanobeams with resonators attached on PZT-4, with resonators attached on epoxy, and without resonators are compared. The results demonstrate that adding resonators indeed plays an active role in opening and widening band gaps. Moreover, the influence rules of different parameters on the band gaps of LR elastic/piezoelectric PC Euler nanobeams with resonators attached on epoxy are discussed, which will play an active role in the further realization of active control of wave propagations.
基金The Natural Foundation of Guangxi, China (No. 0575042) and the Foundation of Ten-Hundred-Thousand Talents of Guangxi, China
文摘A new resonance scattering method was proposed for the determination of chlorite, basing on the resonance scattering effect of rhodamine dye. In HCl-sodium acetate buffer solution, chlorite oxidizes 1- into 12 and the reaction of 12 and excess 1- results in If. It is respectively combined with rhodaminc dyes, including rhodamine B (RhB), butyl rhodamine B (b-RhB), rhodamine G (RhG) and rhodamine S (RhS), to form association complex particles, which exhibit stronger resonance scattering (RS) effect at 400 nm. The chlorite concentration of ClO2 in the range of 0.00726-0.218 μg/ml, 0.0102-0.292 μg/ml, 0.00726-0.145 μg/ml and 0.0290- 0.174 μg/ml is respectively linear to the RS intensity of association complex particle systems at 400 nm for the RhB, b-RhB, RhG and RhS. The detection limits of the four systems were respectively 0.00436, 0.00652, 0.00580 and 0.01450μg/ml ClO2^-. In the four systems, the RhB system possesses good stability and high sensitivity. It has been applied to the analysis of chlorite in wastewater with satisfactory results.