期刊文献+
共找到4,015篇文章
< 1 2 201 >
每页显示 20 50 100
Ada-FFL:Adaptive computing fairness federated learning
1
作者 Yue Cong Jing Qiu +4 位作者 Kun Zhang Zhongyang Fang Chengliang Gao Shen Su Zhihong Tian 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期573-584,共12页
As the scale of federated learning expands,solving the Non-IID data problem of federated learning has become a key challenge of interest.Most existing solutions generally aim to solve the overall performance improveme... As the scale of federated learning expands,solving the Non-IID data problem of federated learning has become a key challenge of interest.Most existing solutions generally aim to solve the overall performance improvement of all clients;however,the overall performance improvement often sacrifices the performance of certain clients,such as clients with less data.Ignoring fairness may greatly reduce the willingness of some clients to participate in federated learning.In order to solve the above problem,the authors propose Ada-FFL,an adaptive fairness federated aggregation learning algorithm,which can dynamically adjust the fairness coefficient according to the update of the local models,ensuring the convergence performance of the global model and the fairness between federated learning clients.By integrating coarse-grained and fine-grained equity solutions,the authors evaluate the deviation of local models by considering both global equity and individual equity,then the weight ratio will be dynamically allocated for each client based on the evaluated deviation value,which can ensure that the update differences of local models are fully considered in each round of training.Finally,by combining a regularisation term to limit the local model update to be closer to the global model,the sensitivity of the model to input perturbations can be reduced,and the generalisation ability of the global model can be improved.Through numerous experiments on several federal data sets,the authors show that our method has more advantages in convergence effect and fairness than the existing baselines. 展开更多
关键词 adaptive fariness aggregation FAIRNESS federated learning non-IID
下载PDF
Adaptable and Dynamic Access Control Decision-Enforcement Approach Based on Multilayer Hybrid Deep Learning Techniques in BYOD Environment
2
作者 Aljuaid Turkea Ayedh M Ainuddin Wahid Abdul Wahab Mohd Yamani Idna Idris 《Computers, Materials & Continua》 SCIE EI 2024年第9期4663-4686,共24页
Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control sy... Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control systems,such as Attribute-Based Access Control(ABAC)and Role-Based Access Control(RBAC),are limited in their ability to enforce access decisions due to the variability and dynamism of attributes related to users and resources.This paper proposes a method for enforcing access decisions that is adaptable and dynamic,based on multilayer hybrid deep learning techniques,particularly the Tabular Deep Neural Network Tabular DNN method.This technique transforms all input attributes in an access request into a binary classification(allow or deny)using multiple layers,ensuring accurate and efficient access decision-making.The proposed solution was evaluated using the Kaggle Amazon access control policy dataset and demonstrated its effectiveness by achieving a 94%accuracy rate.Additionally,the proposed solution enhances the implementation of access decisions based on a variety of resource and user attributes while ensuring privacy through indirect communication with the Policy Administration Point(PAP).This solution significantly improves the flexibility of access control systems,making themmore dynamic and adaptable to the evolving needs ofmodern organizations.Furthermore,it offers a scalable approach to manage the complexities associated with the BYOD environment,providing a robust framework for secure and efficient access management. 展开更多
关键词 BYOD security access control access control decision-enforcement deep learning neural network techniques TabularDNN MULTILAYER dynamic adaptable FLEXIBILITY bottlenecks performance policy conflict
下载PDF
Knowledge Transfer Learning via Dual Density Sampling for Resource-Limited Domain Adaptation 被引量:1
3
作者 Zefeng Zheng Luyao Teng +2 位作者 Wei Zhang Naiqi Wu Shaohua Teng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第12期2269-2291,共23页
Most existing domain adaptation(DA) methods aim to explore favorable performance under complicated environments by sampling.However,there are three unsolved problems that limit their efficiencies:ⅰ) they adopt global... Most existing domain adaptation(DA) methods aim to explore favorable performance under complicated environments by sampling.However,there are three unsolved problems that limit their efficiencies:ⅰ) they adopt global sampling but neglect to exploit global and local sampling simultaneously;ⅱ)they either transfer knowledge from a global perspective or a local perspective,while overlooking transmission of confident knowledge from both perspectives;and ⅲ) they apply repeated sampling during iteration,which takes a lot of time.To address these problems,knowledge transfer learning via dual density sampling(KTL-DDS) is proposed in this study,which consists of three parts:ⅰ) Dual density sampling(DDS) that jointly leverages two sampling methods associated with different views,i.e.,global density sampling that extracts representative samples with the most common features and local density sampling that selects representative samples with critical boundary information;ⅱ)Consistent maximum mean discrepancy(CMMD) that reduces intra-and cross-domain risks and guarantees high consistency of knowledge by shortening the distances of every two subsets among the four subsets collected by DDS;and ⅲ) Knowledge dissemination(KD) that transmits confident and consistent knowledge from the representative target samples with global and local properties to the whole target domain by preserving the neighboring relationships of the target domain.Mathematical analyses show that DDS avoids repeated sampling during the iteration.With the above three actions,confident knowledge with both global and local properties is transferred,and the memory and running time are greatly reduced.In addition,a general framework named dual density sampling approximation(DDSA) is extended,which can be easily applied to other DA algorithms.Extensive experiments on five datasets in clean,label corruption(LC),feature missing(FM),and LC&FM environments demonstrate the encouraging performance of KTL-DDS. 展开更多
关键词 Cross-domain risk dual density sampling intra-domain risk maximum mean discrepancy knowledge transfer learning resource-limited domain adaptation
下载PDF
基于Q-learning的自适应链路状态路由协议
4
作者 吴麒 左琳立 +2 位作者 丁建 邢智童 夏士超 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第5期945-953,共9页
针对大规模无人机自组网面临的任务需求多样性、电磁环境复杂性、节点高机动性等问题,充分考虑无人机节点高速移动的特点,基于无人机拓扑稳定度和链路通信容量指标设计了一种无人机多点中继(multi-point relay,MPR)选择方法;为了减少网... 针对大规模无人机自组网面临的任务需求多样性、电磁环境复杂性、节点高机动性等问题,充分考虑无人机节点高速移动的特点,基于无人机拓扑稳定度和链路通信容量指标设计了一种无人机多点中继(multi-point relay,MPR)选择方法;为了减少网络路由更新时间,增加无人机自组网路由策略的稳定性和可靠性,提出了一种基于Q-learning的自适应链路状态路由协议(Q-learning based adaptive link state routing,QALSR)。仿真结果表明,所提算法性能指标优于现有的主动路由协议。 展开更多
关键词 无人机自组网 路由协议 强化学习 自适应
下载PDF
Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications 被引量:4
5
作者 Ding Wang Ning Gao +2 位作者 Derong Liu Jinna Li Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期18-36,共19页
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ... Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence. 展开更多
关键词 adaptive dynamic programming(ADP) advanced control complex environment data-driven control event-triggered design intelligent control neural networks nonlinear systems optimal control reinforcement learning(RL)
下载PDF
Reinforcement learning based adaptive control for uncertain mechanical systems with asymptotic tracking
6
作者 Xiang-long Liang Zhi-kai Yao +1 位作者 Yao-wen Ge Jian-yong Yao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期19-28,共10页
This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a larg... This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a large class of engineering systems,such as vehicular systems,robot manipulators and satellites.All these systems are often characterized by highly nonlinear characteristics,heavy modeling uncertainties and unknown perturbations,therefore,accurate-model-based nonlinear control approaches become unavailable.Motivated by the challenge,a reinforcement learning(RL)adaptive control methodology based on the actor-critic framework is investigated to compensate the uncertain mechanical dynamics.The approximation inaccuracies caused by RL and the exogenous unknown disturbances are circumvented via a continuous robust integral of the sign of the error(RISE)control approach.Different from a classical RISE control law,a tanh(·)function is utilized instead of a sign(·)function to acquire a more smooth control signal.The developed controller requires very little prior knowledge of the dynamic model,is robust to unknown dynamics and exogenous disturbances,and can achieve asymptotic output tracking.Eventually,co-simulations through ADAMS and MATLAB/Simulink on a three degrees-of-freedom(3-DOF)manipulator and experiments on a real-time electromechanical servo system are performed to verify the performance of the proposed approach. 展开更多
关键词 adaptive control Reinforcement learning Uncertain mechanical systems Asymptotic tracking
下载PDF
Tomato detection method using domain adaptive learning for dense planting environments
7
作者 LI Yang HOU Wenhui +4 位作者 YANG Huihuang RAO Yuan WANG Tan JIN Xiu ZHU Jun 《农业工程学报》 EI CAS CSCD 北大核心 2024年第13期134-145,共12页
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ... This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits. 展开更多
关键词 PLANTS MODELS domain adaptive tomato detection illumination variation semi-supervised learning dense planting environments
下载PDF
Noise-Tolerant ZNN-Based Data-Driven Iterative Learning Control for Discrete Nonaffine Nonlinear MIMO Repetitive Systems
8
作者 Yunfeng Hu Chong Zhang +4 位作者 Bo Wang Jing Zhao Xun Gong Jinwu Gao Hong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期344-361,共18页
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ... Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process. 展开更多
关键词 adaptive control control system synthesis data-driven iterative learning control neurocontroller nonlinear discrete time systems
下载PDF
Deep learning CNN-APSO-LSSVM hybrid fusion model for feature optimization and gas-bearing prediction
9
作者 Jiu-Qiang Yang Nian-Tian Lin +3 位作者 Kai Zhang Yan Cui Chao Fu Dong Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2329-2344,共16页
Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the i... Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs. 展开更多
关键词 Multicomponent seismic data Deep learning adaptive particle swarm optimization Convolutional neural network Least squares support vector machine Feature optimization Gas-bearing distribution prediction
下载PDF
A Novel Framework for Learning and Classifying the Imbalanced Multi-Label Data
10
作者 P.K.A.Chitra S.Appavu alias Balamurugan +3 位作者 S.Geetha Seifedine Kadry Jungeun Kim Keejun Han 《Computer Systems Science & Engineering》 2024年第5期1367-1385,共19页
A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label learning.The main objective of this wor... A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label learning.The main objective of this work is to create a novel framework for learning and classifying imbalancedmulti-label data.This work proposes a framework of two phases.The imbalanced distribution of themulti-label dataset is addressed through the proposed Borderline MLSMOTE resampling method in phase 1.Later,an adaptive weighted l21 norm regularized(Elastic-net)multilabel logistic regression is used to predict unseen samples in phase 2.The proposed Borderline MLSMOTE resampling method focuses on samples with concurrent high labels in contrast to conventional MLSMOTE.The minority labels in these samples are called difficult minority labels and are more prone to penalize classification performance.The concurrentmeasure is considered borderline,and labels associated with samples are regarded as borderline labels in the decision boundary.In phase II,a novel adaptive l21 norm regularized weighted multi-label logistic regression is used to handle balanced data with different weighted synthetic samples.Experimentation on various benchmark datasets shows the outperformance of the proposed method and its powerful predictive performances over existing conventional state-of-the-art multi-label methods. 展开更多
关键词 Multi-label imbalanced data multi-label learning Borderline MLSMOTE concurrent multi-label adaptive weighted multi-label elastic net difficult minority label
下载PDF
Innovation and Practice of Teaching Methods in Digital and Adaptive Learning:Taking Communication Engineering Major as an Example
11
作者 Xixi Fu Kun Zhang +2 位作者 Xiaomin Jiang Xueya Xia Qian Gao 《Journal of Contemporary Educational Research》 2024年第9期32-39,共8页
This paper proposes teaching reforms in communication engineering majors,emphasizing the implementation of digital and adaptive teaching methodologies,integrating emerging technologies,breaking free from the constrain... This paper proposes teaching reforms in communication engineering majors,emphasizing the implementation of digital and adaptive teaching methodologies,integrating emerging technologies,breaking free from the constraints of traditional education,and fostering high-caliber talents.The reform measures encompass fundamental data collection,recognition of individual characteristics,recommendation of adaptive learning resources,process-oriented teaching management,adaptive student guidance and early warning systems,personalized evaluation,and the construction of an integrated service platform.These measures,when combined,form a comprehensive system that is expected to enhance teaching quality and efficiency,and facilitate student development. 展开更多
关键词 Digital learning adaptive learning Communication Engineering Teaching reform Talent cultivation Integrated service platform
下载PDF
Artificial Intelligence-Enhanced Learning:A New Paradigm in the“Business Data Analysis and Application”Course
12
作者 Suhan Wu 《Journal of Contemporary Educational Research》 2024年第2期164-175,共12页
This paper explores the transformative impact of generative artificial intelligence(AI)on the“Business Data Analysis and Application”course in the post-2023 era,marking a significant paradigm shift in educational me... This paper explores the transformative impact of generative artificial intelligence(AI)on the“Business Data Analysis and Application”course in the post-2023 era,marking a significant paradigm shift in educational methodologies.It investigates how generative AI reshapes teaching and learning dynamics,enhancing the processing of complex data sets and nurturing critical thinking skills.The study highlights the role of AI in fostering dynamic,personalized,and adaptive learning experiences,addressing the evolving pedagogical needs of the business sector.Key challenges,including equitable access,academic integrity,and ethical considerations such as data privacy and algorithmic bias,are thoroughly examined.The research reveals that the integration of generative AI aligns with current professional demands,equipping students with cutting-edge AI tools,and tailoring learning to individual needs through real-time feedback mechanisms.The study concludes that the incorporation of generative AI into this course signifies a substantial evolution in educational approaches,offering profound implications for student learning and professional development. 展开更多
关键词 Generative AI Pedagogical innovation adaptive Personalized learning Curriculum enhancement
下载PDF
XA-GANomaly: An Explainable Adaptive Semi-Supervised Learning Method for Intrusion Detection Using GANomaly 被引量:2
13
作者 Yuna Han Hangbae Chang 《Computers, Materials & Continua》 SCIE EI 2023年第7期221-237,共17页
Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechani... Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry.However,real-time training and classifying network traffic pose challenges,as they can lead to the degradation of the overall dataset and difficulties preventing attacks.Additionally,existing semi-supervised learning research might need to analyze the experimental results comprehensively.This paper proposes XA-GANomaly,a novel technique for explainable adaptive semi-supervised learning using GANomaly,an image anomalous detection model that dynamically trains small subsets to these issues.First,this research introduces a deep neural network(DNN)-based GANomaly for semi-supervised learning.Second,this paper presents the proposed adaptive algorithm for the DNN-based GANomaly,which is validated with four subsets of the adaptive dataset.Finally,this study demonstrates a monitoring system that incorporates three explainable techniques—Shapley additive explanations,reconstruction error visualization,and t-distributed stochastic neighbor embedding—to respond effectively to attacks on traffic data at each feature engineering stage,semi-supervised learning,and adaptive learning.Compared to other single-class classification techniques,the proposed DNN-based GANomaly achieves higher scores for Network Security Laboratory-Knowledge Discovery in Databases and UNSW-NB15 datasets at 13%and 8%of F1 scores and 4.17%and 11.51%for accuracy,respectively.Furthermore,experiments of the proposed adaptive learning reveal mostly improved results over the initial values.An analysis and monitoring system based on the combination of the three explainable methodologies is also described.Thus,the proposed method has the potential advantages to be applied in practical industry,and future research will explore handling unbalanced real-time datasets in various scenarios. 展开更多
关键词 Intrusion detection system(IDS) adaptive learning semi-supervised learning explainable artificial intelligence(XAI) monitoring system
下载PDF
Adaptive Multi-Step Evaluation Design With Stability Guarantee for Discrete-Time Optimal Learning Control 被引量:3
14
作者 Ding Wang Jiangyu Wang +2 位作者 Mingming Zhao Peng Xin Junfei Qiao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第9期1797-1809,共13页
This paper is concerned with a novel integrated multi-step heuristic dynamic programming(MsHDP)algorithm for solving optimal control problems.It is shown that,initialized by the zero cost function,MsHDP can converge t... This paper is concerned with a novel integrated multi-step heuristic dynamic programming(MsHDP)algorithm for solving optimal control problems.It is shown that,initialized by the zero cost function,MsHDP can converge to the optimal solution of the Hamilton-Jacobi-Bellman(HJB)equation.Then,the stability of the system is analyzed using control policies generated by MsHDP.Also,a general stability criterion is designed to determine the admissibility of the current control policy.That is,the criterion is applicable not only to traditional value iteration and policy iteration but also to MsHDP.Further,based on the convergence and the stability criterion,the integrated MsHDP algorithm using immature control policies is developed to accelerate learning efficiency greatly.Besides,actor-critic is utilized to implement the integrated MsHDP scheme,where neural networks are used to evaluate and improve the iterative policy as the parameter architecture.Finally,two simulation examples are given to demonstrate that the learning effectiveness of the integrated MsHDP scheme surpasses those of other fixed or integrated methods. 展开更多
关键词 adaptive critic artificial neural networks Hamilton-Jacobi-Bellman(HJB)equation multi-step heuristic dynamic programming multi-step reinforcement learning optimal control
下载PDF
Toward Fine-grained Image Retrieval with Adaptive Deep Learning for Cultural Heritage Image 被引量:2
15
作者 Sathit Prasomphan 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1295-1307,共13页
Fine-grained image classification is a challenging research topic because of the high degree of similarity among categories and the high degree of dissimilarity for a specific category caused by different poses and scal... Fine-grained image classification is a challenging research topic because of the high degree of similarity among categories and the high degree of dissimilarity for a specific category caused by different poses and scales.A cul-tural heritage image is one of thefine-grained images because each image has the same similarity in most cases.Using the classification technique,distinguishing cultural heritage architecture may be difficult.This study proposes a cultural heri-tage content retrieval method using adaptive deep learning forfine-grained image retrieval.The key contribution of this research was the creation of a retrieval mod-el that could handle incremental streams of new categories while maintaining its past performance in old categories and not losing the old categorization of a cul-tural heritage image.The goal of the proposed method is to perform a retrieval task for classes.Incremental learning for new classes was conducted to reduce the re-training process.In this step,the original class is not necessary for re-train-ing which we call an adaptive deep learning technique.Cultural heritage in the case of Thai archaeological site architecture was retrieved through machine learn-ing and image processing.We analyze the experimental results of incremental learning forfine-grained images with images of Thai archaeological site architec-ture from world heritage provinces in Thailand,which have a similar architecture.Using afine-grained image retrieval technique for this group of cultural heritage images in a database can solve the problem of a high degree of similarity among categories and a high degree of dissimilarity for a specific category.The proposed method for retrieving the correct image from a database can deliver an average accuracy of 85 percent.Adaptive deep learning forfine-grained image retrieval was used to retrieve cultural heritage content,and it outperformed state-of-the-art methods infine-grained image retrieval. 展开更多
关键词 Fine-grained image adaptive deep learning cultural heritage image retrieval
下载PDF
改进Q-Learning输电线路超声驱鸟设备参数优化研究
16
作者 徐浩 房旭 +3 位作者 张浩 王爱军 周洪益 宋钰 《电工电气》 2024年第5期53-57,共5页
超声波驱鸟是一种解决输电设备鸟害的重要手段,但现场使用超声波驱鸟器工作模式较单一,易产生鸟类适应问题。提出了一种改进Q-Learning输电线路超声驱鸟设备参数优化方法,针对涉鸟故障历史数据量少以及鸟类的适应性问题,将强化学习算法... 超声波驱鸟是一种解决输电设备鸟害的重要手段,但现场使用超声波驱鸟器工作模式较单一,易产生鸟类适应问题。提出了一种改进Q-Learning输电线路超声驱鸟设备参数优化方法,针对涉鸟故障历史数据量少以及鸟类的适应性问题,将强化学习算法应用于输电线路超声驱鸟设备参数优化;针对传统强化学习算法在设备终端应用中存在收敛慢、耗时长的缺点,提出一种基于动态学习率的改进Q-Learning算法,对不同频段超声波的权重进行自适应优化。实验结果显示,改进Q-Learning算法最优参数的迭代收敛速度大幅提高,优化后驱鸟设备的驱鸟成功率达到了76%,优于传统强化学习算法模式,较好地解决了鸟类适应性问题。 展开更多
关键词 改进Q-learning 超声波驱鸟 参数优化 适应性
下载PDF
Adaptive Kernel Firefly Algorithm Based Feature Selection and Q-Learner Machine Learning Models in Cloud
17
作者 I.Mettildha Mary K.Karuppasamy 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2667-2685,共19页
CC’s(Cloud Computing)networks are distributed and dynamic as signals appear/disappear or lose significance.MLTs(Machine learning Techniques)train datasets which sometime are inadequate in terms of sample for inferrin... CC’s(Cloud Computing)networks are distributed and dynamic as signals appear/disappear or lose significance.MLTs(Machine learning Techniques)train datasets which sometime are inadequate in terms of sample for inferring information.A dynamic strategy,DevMLOps(Development Machine Learning Operations)used in automatic selections and tunings of MLTs result in significant performance differences.But,the scheme has many disadvantages including continuity in training,more samples and training time in feature selections and increased classification execution times.RFEs(Recursive Feature Eliminations)are computationally very expensive in its operations as it traverses through each feature without considering correlations between them.This problem can be overcome by the use of Wrappers as they select better features by accounting for test and train datasets.The aim of this paper is to use DevQLMLOps for automated tuning and selections based on orchestrations and messaging between containers.The proposed AKFA(Adaptive Kernel Firefly Algorithm)is for selecting features for CNM(Cloud Network Monitoring)operations.AKFA methodology is demonstrated using CNSD(Cloud Network Security Dataset)with satisfactory results in the performance metrics like precision,recall,F-measure and accuracy used. 展开更多
关键词 Cloud analytics machine learning ensemble learning distributed learning clustering classification auto selection auto tuning decision feedback cloud DevOps feature selection wrapper feature selection adaptive Kernel Firefly Algorithm(AKFA) Q learning
下载PDF
Unsupervised Domain Adaptation Based on Discriminative Subspace Learning for Cross-Project Defect Prediction 被引量:1
18
作者 Ying Sun Yanfei Sun +4 位作者 Jin Qi Fei Wu Xiao-Yuan Jing Yu Xue Zixin Shen 《Computers, Materials & Continua》 SCIE EI 2021年第9期3373-3389,共17页
:Cross-project defect prediction(CPDP)aims to predict the defects on target project by using a prediction model built on source projects.The main problem in CPDP is the huge distribution gap between the source project... :Cross-project defect prediction(CPDP)aims to predict the defects on target project by using a prediction model built on source projects.The main problem in CPDP is the huge distribution gap between the source project and the target project,which prevents the prediction model from performing well.Most existing methods overlook the class discrimination of the learned features.Seeking an effective transferable model from the source project to the target project for CPDP is challenging.In this paper,we propose an unsupervised domain adaptation based on the discriminative subspace learning(DSL)approach for CPDP.DSL treats the data from two projects as being from two domains and maps the data into a common feature space.It employs crossdomain alignment with discriminative information from different projects to reduce the distribution difference of the data between different projects and incorporates the class discriminative information.Specifically,DSL first utilizes subspace learning based domain adaptation to reduce the distribution gap of data between different projects.Then,it makes full use of the class label information of the source project and transfers the discrimination ability of the source project to the target project in the common space.Comprehensive experiments on five projects verify that DSL can build an effective prediction model and improve the performance over the related competing methods by at least 7.10%and 11.08%in terms of G-measure and AUC. 展开更多
关键词 Cross-project defect prediction discriminative subspace learning unsupervised domain adaptation
下载PDF
Unsupervised Domain Adaptation Learning Algorithm for RGB-D Stairway Recognition 被引量:1
19
作者 Jing WANG Kuangen ZHANGl 《Instrumentation》 2019年第2期21-29,共9页
Detection and recognition of a stairway as upstairs,downstairs and negative(e.g.,ladder,level ground)are the fundamentals of assisting the visually impaired to travel independently in unfamiliar environments.Previous ... Detection and recognition of a stairway as upstairs,downstairs and negative(e.g.,ladder,level ground)are the fundamentals of assisting the visually impaired to travel independently in unfamiliar environments.Previous studies have focused on using massive amounts of RGB-D scene data to train traditional machine learning(ML)-based models to detect and recognize stationary stairway and escalator stairway separately.Nevertheless,none of them consider jointly training these two similar but different datasets to achieve better performance.This paper applies an adversarial learning algorithm on the indicated unsupervised domain adaptation scenario to transfer knowledge learned from the labeled RGB-D escalator stairway dataset to the unlabeled RGB-D stationary dataset.By utilizing the developed method,a feedforward convolutional neural network(CNN)-based feature extractor with five convolution layers can achieve 100%classification accuracy on testing the labeled escalator stairway data distributions and 80.6%classification accuracy on testing the unlabeled stationary data distributions.The success of the developed approach is demonstrated for classifying stairway on these two domains with a limited amount of data.To further demonstrate the effectiveness of the proposed method,the same CNN model is evaluated without domain adaptation and the results are compared with those of the presented architecture. 展开更多
关键词 Domain adaptation convolutional Neural Network Deep learning RGB-D SCENE Data Stairway Classification Visually IMPAIRED
下载PDF
Bearing Fault Diagnosis Based on Deep Discriminative Adversarial Domain Adaptation Neural Networks
20
作者 Jinxi Guo Kai Chen +5 位作者 Jiehui Liu Yuhao Ma Jie Wu Yaochun Wu Xiaofeng Xue Jianshen Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2619-2640,共22页
Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received in... Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasingattention and achieved some results. It might lead to insufficient performance for using transfer learning alone andcause misclassification of target samples for domain bias when building deep models to learn domain-invariantfeatures. To address the above problems, a deep discriminative adversarial domain adaptation neural networkfor the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are firstlyconverted into frequency domain data by Fast Fourier Transform, and an improved deep convolutional neuralnetwork with wide first-layer kernels is used as a feature extractor to extract deep fault features. Then, domaininvariant features are learned from the fault data with correlation alignment-based domain adversarial training.Furthermore, to enhance the discriminative property of features, discriminative feature learning is embeddedinto this network to make the features compact, as well as separable between classes within the class. Finally, theperformance and anti-noise capability of the proposedmethod are evaluated using two sets of bearing fault datasets.The results demonstrate that the proposed method is capable of handling domain offset caused by differentworkingconditions and maintaining more than 97.53% accuracy on various transfer tasks. Furthermore, the proposedmethod can achieve high diagnostic accuracy under varying noise levels. 展开更多
关键词 Fault diagnosis transfer learning domain adaptation discriminative feature learning correlation alignment
下载PDF
上一页 1 2 201 下一页 到第
使用帮助 返回顶部