Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tac...Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tackles two pivotal challenges in the realm of quantum computing:firstly,the development of an effective encoding protocol for translating classical data into quantum states,a critical step for any quantum computation.Different encoding strategies can significantly influence quantum computer performance.Secondly,we address the need to counteract the inevitable noise that can hinder quantum acceleration.Our primary contribution is the introduction of a novel variational data encoding method,grounded in quantum regression algorithm models.By adapting the learning concept from machine learning,we render data encoding a learnable process.This allowed us to study the role of quantum correlation in data encoding.Through numerical simulations of various regression tasks,we demonstrate the efficacy of our variational data encoding,particularly post-learning from instructional data.Moreover,we delve into the role of quantum correlation in enhancing task performance,especially in noisy environments.Our findings underscore the critical role of quantum correlation in not only bolstering performance but also in mitigating noise interference,thus advancing the frontier of quantum computing.展开更多
With the popularization of the Internet and the development of technology,cyber threats are increasing day by day.Threats such as malware,hacking,and data breaches have had a serious impact on cybersecurity.The networ...With the popularization of the Internet and the development of technology,cyber threats are increasing day by day.Threats such as malware,hacking,and data breaches have had a serious impact on cybersecurity.The network security environment in the era of big data presents the characteristics of large amounts of data,high diversity,and high real-time requirements.Traditional security defense methods and tools have been unable to cope with the complex and changing network security threats.This paper proposes a machine-learning security defense algorithm based on metadata association features.Emphasize control over unauthorized users through privacy,integrity,and availability.The user model is established and the mapping between the user model and the metadata of the data source is generated.By analyzing the user model and its corresponding mapping relationship,the query of the user model can be decomposed into the query of various heterogeneous data sources,and the integration of heterogeneous data sources based on the metadata association characteristics can be realized.Define and classify customer information,automatically identify and perceive sensitive data,build a behavior audit and analysis platform,analyze user behavior trajectories,and complete the construction of a machine learning customer information security defense system.The experimental results show that when the data volume is 5×103 bit,the data storage integrity of the proposed method is 92%.The data accuracy is 98%,and the success rate of data intrusion is only 2.6%.It can be concluded that the data storage method in this paper is safe,the data accuracy is always at a high level,and the data disaster recovery performance is good.This method can effectively resist data intrusion and has high air traffic control security.It can not only detect all viruses in user data storage,but also realize integrated virus processing,and further optimize the security defense effect of user big data.展开更多
Quantum correlation shows a fascinating nature of quantum mechanics and plays an important role in some physics topics,especially in the field of quantum information.Quantum correlations of the composite system can be...Quantum correlation shows a fascinating nature of quantum mechanics and plays an important role in some physics topics,especially in the field of quantum information.Quantum correlations of the composite system can be quantified by resorting to geometric or entropy methods,and all these quantification methods exhibit the peculiar freezing phenomenon.The challenge is to find the characteristics of the quantum states that generate the freezing phenomenon,rather than only study the conditions which generate this phenomenon under a certain quantum system.In essence,this is a classification problem.Machine learning has become an effective method for researchers to study classification and feature generation.In this work,we prove that the machine learning can solve the problem of X form quantum states,which is a problem of physical significance.Subsequently,we apply the density-based spatial clustering of applications with noise(DBSCAN)algorithm and the decision tree to divide quantum states into two different groups.Our goal is to classify the quantum correlations of quantum states into two classes:one is the quantum correlation with freezing phenomenon for both Rènyi discord(α=2)and the geometric discord(Bures distance),the other is the quantum correlation of non-freezing phenomenon.The results demonstrate that the machine learning method has reasonable performance in quantum correlation research.展开更多
In recent years,multi-label learning has received a lot of attention.However,most of the existing methods only consider global label correlation or local label correlation.In fact,on the one hand,both global and local...In recent years,multi-label learning has received a lot of attention.However,most of the existing methods only consider global label correlation or local label correlation.In fact,on the one hand,both global and local label correlations can appear in real-world situation at same time.On the other hand,we should not be limited to pairwise labels while ignoring the high-order label correlation.In this paper,we propose a novel and effective method called GLLCBN for multi-label learning.Firstly,we obtain the global label correlation by exploiting label semantic similarity.Then,we analyze the pairwise labels in the label space of the data set to acquire the local correlation.Next,we build the original version of the label dependency model by global and local label correlations.After that,we use graph theory,probability theory and Bayesian networks to eliminate redundant dependency structure in the initial version model,so as to get the optimal label dependent model.Finally,we obtain the feature extraction model by adjusting the Inception V3 model of convolution neural network and combine it with the GLLCBN model to achieve the multi-label learning.The experimental results show that our proposed model has better performance than other multi-label learning methods in performance evaluating.展开更多
This paper describes negative correlation learning for designing neural network ensembles. Negative correlation learning has been firstly analysed in terms of minimising mutual information on a regression task. By min...This paper describes negative correlation learning for designing neural network ensembles. Negative correlation learning has been firstly analysed in terms of minimising mutual information on a regression task. By minimising the mutual information between variables extracted by two neural networks, they are forced to convey different information a-bout some features of their input. Based on the decision boundaries and correct response sets, negative correlation learning has been further studied on two pattern classification problems. The purpose of examining the decision boundaries and the correct response sets is not only to illustrate the learning behavior of negative correlation learning, but also to cast light on how to design more effective neural network ensembles. The experimental results showed the decision boundary of the trained neural network ensemble by negative correlation learning is almost as good as the optimum decision boundary.展开更多
Partial label learning aims to learn a multi-class classifier,where each training example corresponds to a set of candidate labels among which only one is correct.Most studies in the label space have only focused on t...Partial label learning aims to learn a multi-class classifier,where each training example corresponds to a set of candidate labels among which only one is correct.Most studies in the label space have only focused on the difference between candidate labels and non-candidate labels.So far,however,there has been little discussion about the label correlation in the partial label learning.This paper begins with a research on the label correlation,followed by the establishment of a unified framework that integrates the label correlation,the adaptive graph,and the semantic difference maximization criterion.This work generates fresh insight into the acquisition of the learning information from the label space.Specifically,the label correlation is calculated from the candidate label set and is utilized to obtain the similarity of each pair of instances in the label space.After that,the labeling confidence for each instance is updated by the smoothness assumption that two instances should be similar outputs in the label space if they are close in the feature space.At last,an effective optimization program is utilized to solve the unified framework.Extensive experiments on artificial and real-world data sets indicate the superiority of our proposed method to state-of-art partial label learning methods.展开更多
How to comprehensively,scientifically,objectively and impartially evaluate the multiple learning achievements of the PBL model should be highlighted when PBL is introduced and applied.A questionnaire of a total of 23 ...How to comprehensively,scientifically,objectively and impartially evaluate the multiple learning achievements of the PBL model should be highlighted when PBL is introduced and applied.A questionnaire of a total of 23 items involving such dimensions of language proficiency,subject contents and 21 st Century skills was designed.Its reliability and validity were tested and well-met with the statistical requirements.展开更多
Universal lesion detection(ULD)methods for computed tomography(CT)images play a vital role in the modern clinical medicine and intelligent automation.It is well known that single 2D CT slices lack spatial-temporal cha...Universal lesion detection(ULD)methods for computed tomography(CT)images play a vital role in the modern clinical medicine and intelligent automation.It is well known that single 2D CT slices lack spatial-temporal characteristics and contextual information compared to 3D CT blocks.However,3D CT blocks necessitate significantly higher hardware resources during the learning phase.Therefore,efficiently exploiting temporal correlation and spatial-temporal features of 2D CT slices is crucial for ULD tasks.In this paper,we propose a ULD network with the enhanced temporal correlation for this purpose,named TCE-Net.The designed TCE module is applied to enrich the discriminate feature representation of multiple sequential CT slices.Besides,we employ multi-scale feature maps to facilitate the localization and detection of lesions in various sizes.Extensive experiments are conducted on the DeepLesion benchmark demonstrate that thismethod achieves 66.84%and 78.18%for FS@0.5 and FS@1.0,respectively,outperforming compared state-of-the-art methods.展开更多
Aiming at the problem that the data-driven automatic correlation methods which are difficult to adapt to the automatic correlation of oil-bearing strata with large changes in lateral sedimentary facies and strata thic...Aiming at the problem that the data-driven automatic correlation methods which are difficult to adapt to the automatic correlation of oil-bearing strata with large changes in lateral sedimentary facies and strata thickness,an intelligent automatic correlation method of oil-bearing strata based on pattern constraints is formed.We propose to introduce knowledge-driven in automatic correlation of oil-bearing strata,constraining the correlation process by stratigraphic sedimentary patterns and improving the similarity measuring machine and conditional constraint dynamic time warping algorithm to automate the correlation of marker layers and the interfaces of each stratum.The application in Shishen 100 block in the Shinan Oilfield of the Bohai Bay Basin shows that the coincidence rate of the marker layers identified by this method is over 95.00%,and the average coincidence rate of identified oil-bearing strata reaches 90.02% compared to artificial correlation results,which is about 17 percentage points higher than that of the existing automatic correlation methods.The accuracy of the automatic correlation of oil-bearing strata has been effectively improved.展开更多
Cooperative learning and learner autonomy have become heated topics in English teaching.Many researchers both at home and abroad have carried out the study on this field,and they proved that learner autonomy and coope...Cooperative learning and learner autonomy have become heated topics in English teaching.Many researchers both at home and abroad have carried out the study on this field,and they proved that learner autonomy and cooperative learning are rel evant,cooperative learning can promote English majors’learning autonomy in terms of listening,reading,speaking,however,no obvious findings in vocabulary and writing.This study is conducted to prove the feasibilities and effectiveness of cooperative learning applied to foster first-year non-English majors’learning autonomy from the aspect of vocabulary and structure.The re sults of this study showed that cooperative learning was much more effective than traditional teaching approaches in fostering some positive affective factors.According to this research,cooperative learning can also improve learners’vocabulary and struc ture significantly.展开更多
Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and ...Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and recognition performance of the system can be enhanced through judiciously leveraging the correlation among multimodal features.Nevertheless,two issues persist in multi-modal feature fusion recognition:Firstly,the enhancement of recognition performance in fusion recognition has not comprehensively considered the inter-modality correlations among distinct modalities.Secondly,during modal fusion,improper weight selection diminishes the salience of crucial modal features,thereby diminishing the overall recognition performance.To address these two issues,we introduce an enhanced DenseNet multimodal recognition network founded on feature-level fusion.The information from the three modalities is fused akin to RGB,and the input network augments the correlation between modes through channel correlation.Within the enhanced DenseNet network,the Efficient Channel Attention Network(ECA-Net)dynamically adjusts the weight of each channel to amplify the salience of crucial information in each modal feature.Depthwise separable convolution markedly reduces the training parameters and further enhances the feature correlation.Experimental evaluations were conducted on four multimodal databases,comprising six unimodal databases,including multispectral palmprint and palm vein databases from the Chinese Academy of Sciences.The Equal Error Rates(EER)values were 0.0149%,0.0150%,0.0099%,and 0.0050%,correspondingly.In comparison to other network methods for palmprint,palm vein,and finger vein fusion recognition,this approach substantially enhances recognition performance,rendering it suitable for high-security environments with practical applicability.The experiments in this article utilized amodest sample database comprising 200 individuals.The subsequent phase involves preparing for the extension of the method to larger databases.展开更多
Based on Cognitive Style Theory,Oxford’s Speaking Learning Theory and Communicative Competence Theory,this paper adopts questionnaire method,uses Sternberg’s Thinking Style Inventory modified by Zhang Lifang,as well...Based on Cognitive Style Theory,Oxford’s Speaking Learning Theory and Communicative Competence Theory,this paper adopts questionnaire method,uses Sternberg’s Thinking Style Inventory modified by Zhang Lifang,as well as Oxford’s Learning Strategies Scale,and combines with the actual situation of junior high school students’oral learning to design the questionnaire of speaking learning strategies.Eighth graders of a junior middle school in Sichuan Province are randomly selected as the research object.The statistical tool SPSS23.0 is used to conduct the descriptive analysis and Pearson correlation analysis of the questionnaire results to explore the overall situation of junior high school students’thinking styles and the use of English-speaking learning strategies as well as their correlation.According to the research,junior high school students generally tend to executive style,liberal style,conservative style,legislative style,hierarchic style.The use of speaking learning strategies is at an average level.They tend to use memory speaking strategies,social speaking strategies,affective speaking strategies,and cognitive speaking strategies.As a whole,there is a relatively significant correlation between thinking styles and speaking learning strategies.Specifically,there is a partial correlation between thinking styles and speaking learning strategies.展开更多
Hashing technology has the advantages of reducing data storage and improving the efficiency of the learning system,making it more and more widely used in image retrieval.Multi-view data describes image information mor...Hashing technology has the advantages of reducing data storage and improving the efficiency of the learning system,making it more and more widely used in image retrieval.Multi-view data describes image information more comprehensively than traditional methods using a single-view.How to use hashing to combine multi-view data for image retrieval is still a challenge.In this paper,a multi-view fusion hashing method based on RKCCA(Random Kernel Canonical Correlation Analysis)is proposed.In order to describe image content more accurately,we use deep learning dense convolutional network feature DenseNet to construct multi-view by combining GIST feature or BoW_SIFT(Bag-of-Words model+SIFT feature)feature.This algorithm uses RKCCA method to fuse multi-view features to construct association features and apply them to image retrieval.The algorithm generates binary hash code with minimal distortion error by designing quantization regularization terms.A large number of experiments on benchmark datasets show that this method is superior to other multi-view hashing methods.展开更多
Excess correlation between the activity or properties of two particles separated by non-local distances has been demonstrated for photons, shifts in relative proton and hydroxyl ratios in spring water, and the distrib...Excess correlation between the activity or properties of two particles separated by non-local distances has been demonstrated for photons, shifts in relative proton and hydroxyl ratios in spring water, and the distribution of values from random number generators if both loci shared a specific type of rotational magnetic field. Previous experiments had shown that specific responses from pairs of people who shared circumcerebral magnetic fields with changing angular velocities revealed significant excess correlation. The most significant differences occurred during the component of the field exposure that has previously been associated with “excess correlation”. In the present experiments, we found evidence of excess correlation of performance (serial in-game scores) occurred between pairs (separated by 10 m) of experienced gamers during the relative measures for the central portion of the protocol but was diminished when the “excess correlation” electromagnetic fields were activated, suggesting a similar competing mechanism. The results are consistent with the interpretation that shared video systems and activities may enhance excess correlation of responses. This can be simulated in novice players by experimentally inducing excess correlation through appropriate application of changing, circumcerebral angular velocity magnetic fields that were similar in magnitude to those associated with computer systems and time frames that define human consciousness.展开更多
Considering limitations of Linear Discriminant Analysis (LDA) and Marginal Fisher Analysis (MFA), a novel discriminant analysis called Local Correlation Discriminant Analysis (LCDA) is proposed in this paper. The main...Considering limitations of Linear Discriminant Analysis (LDA) and Marginal Fisher Analysis (MFA), a novel discriminant analysis called Local Correlation Discriminant Analysis (LCDA) is proposed in this paper. The main idea behind LCDA is to use more robust similarity measure, correlation metric, to measure the local similarity between image data. This results in better classifi-cation performance. In addition, to further improve the discriminant power of LCDA, we extend LCDA to semi-supervised case, which can make use of both labeled and unlabeled data to perform dis-criminant analysis. Extensive experimental results on ORL and AR face databases demonstrate that the proposed LCDA and its semi-supervised version are superior to Principal Component Analysis (PCA), LDA, CEA, and MFA.展开更多
Label correlations are an essential technique for data mining that solves the possible correlation problem between different labels in multi-label classification.Although this technique is widely used in multi-label c...Label correlations are an essential technique for data mining that solves the possible correlation problem between different labels in multi-label classification.Although this technique is widely used in multi-label classification problems,batch learning deals with most issues,which consumes a lot of time and space resources.Unlike traditional batch learning methods,online learning represents a promising family of efficient and scalable machine learning algorithms for large-scale datasets.However,existing online learning research has done little to consider correlations between labels.On the basis of existing research,this paper proposes a multi-label online learning algorithm based on label correlations by maximizing the interval between related labels and unrelated labels in multi-label samples.We evaluate the performance of the proposed algorithm on several public datasets.Experiments show the effectiveness of our algorithm.展开更多
Recently, Massive Open Online Courses(MOOCs) have become a major online learning methodology for millions of people worldwide. However, the dropout rates from several current MOOCs are high. Usually, dropout predictio...Recently, Massive Open Online Courses(MOOCs) have become a major online learning methodology for millions of people worldwide. However, the dropout rates from several current MOOCs are high. Usually, dropout prediction aims to predict whether a learner will exhibit learning behaviors during several consecutive days in the future. Therefore, the information related to the learning behaviors of a learner in several consecutive days should be considered. After in-depth analysis of the learning behavior patterns of the MOOC learners, this study reports that learners often exhibit similar learning behaviors on several consecutive days, i.e., the learning status of a learner for the subsequent day is likely to be similar to that for the previous day. Based on this characteristic of MOOC learning,this study proposes a new simple feature matrix for keeping information related to the local correlation of learning behaviors and a new Convolutional Neural Network(CNN) model for predicting the dropout. Extensive experimental validations illustrate that the local correlation of learning behaviors should not be neglected. The proposed CNN model considers this characteristic and improves the dropout prediction accuracy. Furthermore, the proposed model can be used to predict dropout temporally and early when sufficient data are collected.展开更多
The Extreme Learning Machine(ELM) is an effective learning algorithm for a Single-Layer Feedforward Network(SLFN). It performs well in managing some problems due to its fast learning speed. However, in practical a...The Extreme Learning Machine(ELM) is an effective learning algorithm for a Single-Layer Feedforward Network(SLFN). It performs well in managing some problems due to its fast learning speed. However, in practical applications, its performance might be affected by the noise in the training data. To tackle the noise issue, we propose a novel heterogeneous ensemble of ELMs in this article. Specifically, the correntropy is used to achieve insensitive performance to outliers, while implementing Negative Correlation Learning(NCL) to enhance diversity among the ensemble. The proposed Heterogeneous Ensemble of ELMs(HE2 LM) for classification has different ELM algorithms including the Regularized ELM(RELM), the Kernel ELM(KELM), and the L2-norm-optimized ELM(ELML2). The ensemble is constructed by training a randomly selected ELM classifier on a subset of the training data selected through random resampling. Then, the class label of unseen data is predicted using a maximum weighted sum approach. After splitting the training data into subsets, the proposed HE2 LM is tested through classification and regression tasks on real-world benchmark datasets and synthetic datasets. Hence, the simulation results show that compared with other algorithms, our proposed method can achieve higher prediction accuracy, better generalization, and less sensitivity to outliers.展开更多
基金the National Natural Science Foun-dation of China(Grant Nos.12105090 and 12175057).
文摘Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tackles two pivotal challenges in the realm of quantum computing:firstly,the development of an effective encoding protocol for translating classical data into quantum states,a critical step for any quantum computation.Different encoding strategies can significantly influence quantum computer performance.Secondly,we address the need to counteract the inevitable noise that can hinder quantum acceleration.Our primary contribution is the introduction of a novel variational data encoding method,grounded in quantum regression algorithm models.By adapting the learning concept from machine learning,we render data encoding a learnable process.This allowed us to study the role of quantum correlation in data encoding.Through numerical simulations of various regression tasks,we demonstrate the efficacy of our variational data encoding,particularly post-learning from instructional data.Moreover,we delve into the role of quantum correlation in enhancing task performance,especially in noisy environments.Our findings underscore the critical role of quantum correlation in not only bolstering performance but also in mitigating noise interference,thus advancing the frontier of quantum computing.
基金This work was supported by the National Natural Science Foundation of China(U2133208,U20A20161).
文摘With the popularization of the Internet and the development of technology,cyber threats are increasing day by day.Threats such as malware,hacking,and data breaches have had a serious impact on cybersecurity.The network security environment in the era of big data presents the characteristics of large amounts of data,high diversity,and high real-time requirements.Traditional security defense methods and tools have been unable to cope with the complex and changing network security threats.This paper proposes a machine-learning security defense algorithm based on metadata association features.Emphasize control over unauthorized users through privacy,integrity,and availability.The user model is established and the mapping between the user model and the metadata of the data source is generated.By analyzing the user model and its corresponding mapping relationship,the query of the user model can be decomposed into the query of various heterogeneous data sources,and the integration of heterogeneous data sources based on the metadata association characteristics can be realized.Define and classify customer information,automatically identify and perceive sensitive data,build a behavior audit and analysis platform,analyze user behavior trajectories,and complete the construction of a machine learning customer information security defense system.The experimental results show that when the data volume is 5×103 bit,the data storage integrity of the proposed method is 92%.The data accuracy is 98%,and the success rate of data intrusion is only 2.6%.It can be concluded that the data storage method in this paper is safe,the data accuracy is always at a high level,and the data disaster recovery performance is good.This method can effectively resist data intrusion and has high air traffic control security.It can not only detect all viruses in user data storage,but also realize integrated virus processing,and further optimize the security defense effect of user big data.
基金supported by the National Natural Science Foundation of China(61502082)National Key R&D Program of China,Grant No.(2018YFA0306703).
文摘Quantum correlation shows a fascinating nature of quantum mechanics and plays an important role in some physics topics,especially in the field of quantum information.Quantum correlations of the composite system can be quantified by resorting to geometric or entropy methods,and all these quantification methods exhibit the peculiar freezing phenomenon.The challenge is to find the characteristics of the quantum states that generate the freezing phenomenon,rather than only study the conditions which generate this phenomenon under a certain quantum system.In essence,this is a classification problem.Machine learning has become an effective method for researchers to study classification and feature generation.In this work,we prove that the machine learning can solve the problem of X form quantum states,which is a problem of physical significance.Subsequently,we apply the density-based spatial clustering of applications with noise(DBSCAN)algorithm and the decision tree to divide quantum states into two different groups.Our goal is to classify the quantum correlations of quantum states into two classes:one is the quantum correlation with freezing phenomenon for both Rènyi discord(α=2)and the geometric discord(Bures distance),the other is the quantum correlation of non-freezing phenomenon.The results demonstrate that the machine learning method has reasonable performance in quantum correlation research.
文摘In recent years,multi-label learning has received a lot of attention.However,most of the existing methods only consider global label correlation or local label correlation.In fact,on the one hand,both global and local label correlations can appear in real-world situation at same time.On the other hand,we should not be limited to pairwise labels while ignoring the high-order label correlation.In this paper,we propose a novel and effective method called GLLCBN for multi-label learning.Firstly,we obtain the global label correlation by exploiting label semantic similarity.Then,we analyze the pairwise labels in the label space of the data set to acquire the local correlation.Next,we build the original version of the label dependency model by global and local label correlations.After that,we use graph theory,probability theory and Bayesian networks to eliminate redundant dependency structure in the initial version model,so as to get the optimal label dependent model.Finally,we obtain the feature extraction model by adjusting the Inception V3 model of convolution neural network and combine it with the GLLCBN model to achieve the multi-label learning.The experimental results show that our proposed model has better performance than other multi-label learning methods in performance evaluating.
基金Supported by the National Natural Science Foundation of China(60133010)
文摘This paper describes negative correlation learning for designing neural network ensembles. Negative correlation learning has been firstly analysed in terms of minimising mutual information on a regression task. By minimising the mutual information between variables extracted by two neural networks, they are forced to convey different information a-bout some features of their input. Based on the decision boundaries and correct response sets, negative correlation learning has been further studied on two pattern classification problems. The purpose of examining the decision boundaries and the correct response sets is not only to illustrate the learning behavior of negative correlation learning, but also to cast light on how to design more effective neural network ensembles. The experimental results showed the decision boundary of the trained neural network ensemble by negative correlation learning is almost as good as the optimum decision boundary.
基金supported by the National Natural Science Foundation of China(62176197,61806155)the National Natural Science Foundation of Shaanxi Province(2020GY-062).
文摘Partial label learning aims to learn a multi-class classifier,where each training example corresponds to a set of candidate labels among which only one is correct.Most studies in the label space have only focused on the difference between candidate labels and non-candidate labels.So far,however,there has been little discussion about the label correlation in the partial label learning.This paper begins with a research on the label correlation,followed by the establishment of a unified framework that integrates the label correlation,the adaptive graph,and the semantic difference maximization criterion.This work generates fresh insight into the acquisition of the learning information from the label space.Specifically,the label correlation is calculated from the candidate label set and is utilized to obtain the similarity of each pair of instances in the label space.After that,the labeling confidence for each instance is updated by the smoothness assumption that two instances should be similar outputs in the label space if they are close in the feature space.At last,an effective optimization program is utilized to solve the unified framework.Extensive experiments on artificial and real-world data sets indicate the superiority of our proposed method to state-of-art partial label learning methods.
文摘How to comprehensively,scientifically,objectively and impartially evaluate the multiple learning achievements of the PBL model should be highlighted when PBL is introduced and applied.A questionnaire of a total of 23 items involving such dimensions of language proficiency,subject contents and 21 st Century skills was designed.Its reliability and validity were tested and well-met with the statistical requirements.
基金Taishan Young Scholars Program of Shandong Province,Key Development Program for Basic Research of Shandong Province(ZR2020ZD44).
文摘Universal lesion detection(ULD)methods for computed tomography(CT)images play a vital role in the modern clinical medicine and intelligent automation.It is well known that single 2D CT slices lack spatial-temporal characteristics and contextual information compared to 3D CT blocks.However,3D CT blocks necessitate significantly higher hardware resources during the learning phase.Therefore,efficiently exploiting temporal correlation and spatial-temporal features of 2D CT slices is crucial for ULD tasks.In this paper,we propose a ULD network with the enhanced temporal correlation for this purpose,named TCE-Net.The designed TCE module is applied to enrich the discriminate feature representation of multiple sequential CT slices.Besides,we employ multi-scale feature maps to facilitate the localization and detection of lesions in various sizes.Extensive experiments are conducted on the DeepLesion benchmark demonstrate that thismethod achieves 66.84%and 78.18%for FS@0.5 and FS@1.0,respectively,outperforming compared state-of-the-art methods.
基金Supported by the National Natural Science Foundation of China(42272110)CNPC-China University of Petroleum(Beijing)Strategic Cooperation Project(ZLZX2020-02).
文摘Aiming at the problem that the data-driven automatic correlation methods which are difficult to adapt to the automatic correlation of oil-bearing strata with large changes in lateral sedimentary facies and strata thickness,an intelligent automatic correlation method of oil-bearing strata based on pattern constraints is formed.We propose to introduce knowledge-driven in automatic correlation of oil-bearing strata,constraining the correlation process by stratigraphic sedimentary patterns and improving the similarity measuring machine and conditional constraint dynamic time warping algorithm to automate the correlation of marker layers and the interfaces of each stratum.The application in Shishen 100 block in the Shinan Oilfield of the Bohai Bay Basin shows that the coincidence rate of the marker layers identified by this method is over 95.00%,and the average coincidence rate of identified oil-bearing strata reaches 90.02% compared to artificial correlation results,which is about 17 percentage points higher than that of the existing automatic correlation methods.The accuracy of the automatic correlation of oil-bearing strata has been effectively improved.
文摘Cooperative learning and learner autonomy have become heated topics in English teaching.Many researchers both at home and abroad have carried out the study on this field,and they proved that learner autonomy and cooperative learning are rel evant,cooperative learning can promote English majors’learning autonomy in terms of listening,reading,speaking,however,no obvious findings in vocabulary and writing.This study is conducted to prove the feasibilities and effectiveness of cooperative learning applied to foster first-year non-English majors’learning autonomy from the aspect of vocabulary and structure.The re sults of this study showed that cooperative learning was much more effective than traditional teaching approaches in fostering some positive affective factors.According to this research,cooperative learning can also improve learners’vocabulary and struc ture significantly.
基金funded by the National Natural Science Foundation of China(61991413)the China Postdoctoral Science Foundation(2019M651142)+1 种基金the Natural Science Foundation of Liaoning Province(2021-KF-12-07)the Natural Science Foundations of Liaoning Province(2023-MS-322).
文摘Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and recognition performance of the system can be enhanced through judiciously leveraging the correlation among multimodal features.Nevertheless,two issues persist in multi-modal feature fusion recognition:Firstly,the enhancement of recognition performance in fusion recognition has not comprehensively considered the inter-modality correlations among distinct modalities.Secondly,during modal fusion,improper weight selection diminishes the salience of crucial modal features,thereby diminishing the overall recognition performance.To address these two issues,we introduce an enhanced DenseNet multimodal recognition network founded on feature-level fusion.The information from the three modalities is fused akin to RGB,and the input network augments the correlation between modes through channel correlation.Within the enhanced DenseNet network,the Efficient Channel Attention Network(ECA-Net)dynamically adjusts the weight of each channel to amplify the salience of crucial information in each modal feature.Depthwise separable convolution markedly reduces the training parameters and further enhances the feature correlation.Experimental evaluations were conducted on four multimodal databases,comprising six unimodal databases,including multispectral palmprint and palm vein databases from the Chinese Academy of Sciences.The Equal Error Rates(EER)values were 0.0149%,0.0150%,0.0099%,and 0.0050%,correspondingly.In comparison to other network methods for palmprint,palm vein,and finger vein fusion recognition,this approach substantially enhances recognition performance,rendering it suitable for high-security environments with practical applicability.The experiments in this article utilized amodest sample database comprising 200 individuals.The subsequent phase involves preparing for the extension of the method to larger databases.
文摘Based on Cognitive Style Theory,Oxford’s Speaking Learning Theory and Communicative Competence Theory,this paper adopts questionnaire method,uses Sternberg’s Thinking Style Inventory modified by Zhang Lifang,as well as Oxford’s Learning Strategies Scale,and combines with the actual situation of junior high school students’oral learning to design the questionnaire of speaking learning strategies.Eighth graders of a junior middle school in Sichuan Province are randomly selected as the research object.The statistical tool SPSS23.0 is used to conduct the descriptive analysis and Pearson correlation analysis of the questionnaire results to explore the overall situation of junior high school students’thinking styles and the use of English-speaking learning strategies as well as their correlation.According to the research,junior high school students generally tend to executive style,liberal style,conservative style,legislative style,hierarchic style.The use of speaking learning strategies is at an average level.They tend to use memory speaking strategies,social speaking strategies,affective speaking strategies,and cognitive speaking strategies.As a whole,there is a relatively significant correlation between thinking styles and speaking learning strategies.Specifically,there is a partial correlation between thinking styles and speaking learning strategies.
基金This work is supported by the National Natural Science Foundation of China(No.61772561)the Key Research&Development Plan of Hunan Province(No.2018NK2012)+1 种基金the Science Research Projects of Hunan Provincial Education Department(Nos.18A174,18C0262)the Science&Technology Innovation Platform and Talent Plan of Hunan Province(2017TP1022).
文摘Hashing technology has the advantages of reducing data storage and improving the efficiency of the learning system,making it more and more widely used in image retrieval.Multi-view data describes image information more comprehensively than traditional methods using a single-view.How to use hashing to combine multi-view data for image retrieval is still a challenge.In this paper,a multi-view fusion hashing method based on RKCCA(Random Kernel Canonical Correlation Analysis)is proposed.In order to describe image content more accurately,we use deep learning dense convolutional network feature DenseNet to construct multi-view by combining GIST feature or BoW_SIFT(Bag-of-Words model+SIFT feature)feature.This algorithm uses RKCCA method to fuse multi-view features to construct association features and apply them to image retrieval.The algorithm generates binary hash code with minimal distortion error by designing quantization regularization terms.A large number of experiments on benchmark datasets show that this method is superior to other multi-view hashing methods.
文摘Excess correlation between the activity or properties of two particles separated by non-local distances has been demonstrated for photons, shifts in relative proton and hydroxyl ratios in spring water, and the distribution of values from random number generators if both loci shared a specific type of rotational magnetic field. Previous experiments had shown that specific responses from pairs of people who shared circumcerebral magnetic fields with changing angular velocities revealed significant excess correlation. The most significant differences occurred during the component of the field exposure that has previously been associated with “excess correlation”. In the present experiments, we found evidence of excess correlation of performance (serial in-game scores) occurred between pairs (separated by 10 m) of experienced gamers during the relative measures for the central portion of the protocol but was diminished when the “excess correlation” electromagnetic fields were activated, suggesting a similar competing mechanism. The results are consistent with the interpretation that shared video systems and activities may enhance excess correlation of responses. This can be simulated in novice players by experimentally inducing excess correlation through appropriate application of changing, circumcerebral angular velocity magnetic fields that were similar in magnitude to those associated with computer systems and time frames that define human consciousness.
基金Supproted by the National Natural Science Foundation of China(No.60875004)the Natural Science Foundation of Jiangsu Province of China(No.BK2009184)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.07KJB520133)
文摘Considering limitations of Linear Discriminant Analysis (LDA) and Marginal Fisher Analysis (MFA), a novel discriminant analysis called Local Correlation Discriminant Analysis (LCDA) is proposed in this paper. The main idea behind LCDA is to use more robust similarity measure, correlation metric, to measure the local similarity between image data. This results in better classifi-cation performance. In addition, to further improve the discriminant power of LCDA, we extend LCDA to semi-supervised case, which can make use of both labeled and unlabeled data to perform dis-criminant analysis. Extensive experimental results on ORL and AR face databases demonstrate that the proposed LCDA and its semi-supervised version are superior to Principal Component Analysis (PCA), LDA, CEA, and MFA.
基金This work is supported by the National Natural Science Foundation of China (61070109) and Opening Project of Beijing Key Laboratory of Mobile Computing and Pervasive Device.
基金Supported by the State Grid Technology Item(52460D230002)。
文摘Label correlations are an essential technique for data mining that solves the possible correlation problem between different labels in multi-label classification.Although this technique is widely used in multi-label classification problems,batch learning deals with most issues,which consumes a lot of time and space resources.Unlike traditional batch learning methods,online learning represents a promising family of efficient and scalable machine learning algorithms for large-scale datasets.However,existing online learning research has done little to consider correlations between labels.On the basis of existing research,this paper proposes a multi-label online learning algorithm based on label correlations by maximizing the interval between related labels and unrelated labels in multi-label samples.We evaluate the performance of the proposed algorithm on several public datasets.Experiments show the effectiveness of our algorithm.
基金partially supported by the National Natural Science Foundation of China (Nos. 61866007, 61363029, 61662014, 61763007, and U1811264)the Natural Science Foundation of Guangxi District (No. 2018GXNSFDA138006)+2 种基金Guangxi Key Laboratory of Trusted Software (No. KX201721)Humanities and Social Sciences Research Projects of the Ministry of Education (No. 17JDGC022)Chongqing Higher Education Reform Project (No. 183137)
文摘Recently, Massive Open Online Courses(MOOCs) have become a major online learning methodology for millions of people worldwide. However, the dropout rates from several current MOOCs are high. Usually, dropout prediction aims to predict whether a learner will exhibit learning behaviors during several consecutive days in the future. Therefore, the information related to the learning behaviors of a learner in several consecutive days should be considered. After in-depth analysis of the learning behavior patterns of the MOOC learners, this study reports that learners often exhibit similar learning behaviors on several consecutive days, i.e., the learning status of a learner for the subsequent day is likely to be similar to that for the previous day. Based on this characteristic of MOOC learning,this study proposes a new simple feature matrix for keeping information related to the local correlation of learning behaviors and a new Convolutional Neural Network(CNN) model for predicting the dropout. Extensive experimental validations illustrate that the local correlation of learning behaviors should not be neglected. The proposed CNN model considers this characteristic and improves the dropout prediction accuracy. Furthermore, the proposed model can be used to predict dropout temporally and early when sufficient data are collected.
基金supported by the National Natural Science Foundation of China(Nos.61174103 and61603032)the National Key Technologies R&D Program of China(No.2015BAK38B01)+2 种基金the National Key Research and Development Program of China(No.2017YFB0702300)the China Postdoctoral Science Foundation(No.2016M590048)the University of Science and Technology Beijing–Taipei University of Technology Joint Research Program(TW201705)
文摘The Extreme Learning Machine(ELM) is an effective learning algorithm for a Single-Layer Feedforward Network(SLFN). It performs well in managing some problems due to its fast learning speed. However, in practical applications, its performance might be affected by the noise in the training data. To tackle the noise issue, we propose a novel heterogeneous ensemble of ELMs in this article. Specifically, the correntropy is used to achieve insensitive performance to outliers, while implementing Negative Correlation Learning(NCL) to enhance diversity among the ensemble. The proposed Heterogeneous Ensemble of ELMs(HE2 LM) for classification has different ELM algorithms including the Regularized ELM(RELM), the Kernel ELM(KELM), and the L2-norm-optimized ELM(ELML2). The ensemble is constructed by training a randomly selected ELM classifier on a subset of the training data selected through random resampling. Then, the class label of unseen data is predicted using a maximum weighted sum approach. After splitting the training data into subsets, the proposed HE2 LM is tested through classification and regression tasks on real-world benchmark datasets and synthetic datasets. Hence, the simulation results show that compared with other algorithms, our proposed method can achieve higher prediction accuracy, better generalization, and less sensitivity to outliers.