For accelerating the supervised learning by the SpikeProp algorithm with the temporal coding paradigm in spiking neural networks (SNNs), three learning rate adaptation methods (heuristic rule, delta-delta rule, and de...For accelerating the supervised learning by the SpikeProp algorithm with the temporal coding paradigm in spiking neural networks (SNNs), three learning rate adaptation methods (heuristic rule, delta-delta rule, and delta-bar-delta rule), which are used to speed up training in artificial neural networks, are used to develop the training algorithms for feedforward SNN. The performance of these algorithms is investigated by four experiments: classical XOR (exclusive or) problem, Iris dataset, fault diagnosis in the Tennessee Eastman process, and Poisson trains of discrete spikes. The results demonstrate that all the three learning rate adaptation methods are able to speed up convergence of SNN compared with the original SpikeProp algorithm. Furthermore, if the adaptive learning rate is used in combination with the momentum term, the two modifications will balance each other in a beneficial way to accomplish rapid and steady convergence. In the three learning rate adaptation methods, delta-bar-delta rule performs the best. The delta-bar-delta method with momentum has the fastest convergence rate, the greatest stability of training process, and the maximum accuracy of network learning. The proposed algorithms in this paper are simple and efficient, and consequently valuable for practical applications of SNN.展开更多
This paper proposes teaching reforms in communication engineering majors,emphasizing the implementation of digital and adaptive teaching methodologies,integrating emerging technologies,breaking free from the constrain...This paper proposes teaching reforms in communication engineering majors,emphasizing the implementation of digital and adaptive teaching methodologies,integrating emerging technologies,breaking free from the constraints of traditional education,and fostering high-caliber talents.The reform measures encompass fundamental data collection,recognition of individual characteristics,recommendation of adaptive learning resources,process-oriented teaching management,adaptive student guidance and early warning systems,personalized evaluation,and the construction of an integrated service platform.These measures,when combined,form a comprehensive system that is expected to enhance teaching quality and efficiency,and facilitate student development.展开更多
An adaptive topology learning approach is proposed to learn the topology of a practical camera network in an unsupervised way. The nodes are modeled by the Gaussian mixture model. The connectivity between nodes is jud...An adaptive topology learning approach is proposed to learn the topology of a practical camera network in an unsupervised way. The nodes are modeled by the Gaussian mixture model. The connectivity between nodes is judged by their cross-correlation function, which is also used to calculate their transition time distribution. The mutual information of the connected node pair is employed for transition probability calculation. A false link eliminating approach is proposed, along with a topology updating strategy to improve the learned topology. A real monitoring system with five disjoint cameras is built for experiments. Comparative results with traditional methods show that the proposed method is more accurate in topology learning and is more robust to environmental changes.展开更多
In this paper, a learning control approach is applied to the generalized projective synchronisation (GPS) of different chaotic systems with unknown periodically time-varying parameters. Using the Lyapunov--Krasovski...In this paper, a learning control approach is applied to the generalized projective synchronisation (GPS) of different chaotic systems with unknown periodically time-varying parameters. Using the Lyapunov--Krasovskii functional stability theory, a differential-difference mixed parametric learning law and an adaptive learning control law are constructed to make the states of two different chaotic systems asymptotically synchronised. The scheme is successfully applied to the generalized projective synchronisation between the Lorenz system and Chen system. Moreover, numerical simulations results are used to verify the effectiveness of the proposed scheme.展开更多
An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (...An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper.展开更多
In this paper, an optimal higher order learning adaptive control approach is developed for a class of SISO nonlinear systems. This design is model-free and depends directly on pseudo-partial-derivatives derived on-lin...In this paper, an optimal higher order learning adaptive control approach is developed for a class of SISO nonlinear systems. This design is model-free and depends directly on pseudo-partial-derivatives derived on-line from the input and output information of the system. A novel weighted one-step-ahead control criterion function is proposed for the control law. The convergence analysis shows that the proposed control law can guarantee the convergence under the assumption that the desired output is a set point. Simulation examples are provided for nonlinear systems to illustrate the better performance of the higher order learning adaptive control.展开更多
This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and a...This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and analyze adaptive ILC,for which robust convergence analysis via a contraction mapping approach is realized by leveraging properties of substochastic matrices.It is shown that robust tracking tasks can be realized for optimization-based adaptive ILC,where the boundedness of system trajectories and estimated parameters can be ensured,regardless of unknown time-varying nonlinearities and nonrepetitive uncertainties.Two simulation tests,especially implemented for an injection molding process,demonstrate the effectiveness of our robust optimization-based ILC results.展开更多
The adaptive learning and prediction of a highly nonlinear and time-varying bioreactor benchmark process is studied using Neur-On-Line, a graphical tool kit for developing and deploying neural networks in the G2 real ...The adaptive learning and prediction of a highly nonlinear and time-varying bioreactor benchmark process is studied using Neur-On-Line, a graphical tool kit for developing and deploying neural networks in the G2 real time intelligent environment,and a new modified Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newton algorithm. The modified BFGS algorithm for the adaptive learning of back propagation (BP) neural networks is developed and embedded into NeurOn-Line by introducing a new search method of learning rate to the full memory BFGS algorithm. Simulation results show that the adaptive learning and prediction neural network system can quicklv track the time-varving and nonlinear behavior of the bioreactor.展开更多
Recently, various control methods represented by proportional-integral-derivative (PID) control are used for robotic control. To cope with the requirements for high response and precision, advanced feedforward contr...Recently, various control methods represented by proportional-integral-derivative (PID) control are used for robotic control. To cope with the requirements for high response and precision, advanced feedforward controllers such as gravity compensator, Coriolis/centrifugal force compensator and friction compensators have been built in the controller. Generally, it causes heavy computational load when calculating the compensating value within a short sampling period. In this paper, integrated recurrent neural networks are applied as a feedforward controller for PUMA560 manipulator. The feedforward controller works instead of gravity and Coriolis/centrifugal force compensators. In the learning process of the neural network by using back propagation algorithm, the learning coefficient and gain of sigmoid function are tuned intuitively and empirically according to teaching signals. The tuning is complicated because it is being conducted by trial and error. Especially, when the scale of teaching signal is large, the problem becomes crucial. To cope with the problem which concerns the learning performance, a simple and adaptive learning technique for large scale teaching signals is proposed. The learning techniques and control effectiveness are evaluated through simulations using the dynamic model of PUMA560 manipulator.展开更多
Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechani...Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry.However,real-time training and classifying network traffic pose challenges,as they can lead to the degradation of the overall dataset and difficulties preventing attacks.Additionally,existing semi-supervised learning research might need to analyze the experimental results comprehensively.This paper proposes XA-GANomaly,a novel technique for explainable adaptive semi-supervised learning using GANomaly,an image anomalous detection model that dynamically trains small subsets to these issues.First,this research introduces a deep neural network(DNN)-based GANomaly for semi-supervised learning.Second,this paper presents the proposed adaptive algorithm for the DNN-based GANomaly,which is validated with four subsets of the adaptive dataset.Finally,this study demonstrates a monitoring system that incorporates three explainable techniques—Shapley additive explanations,reconstruction error visualization,and t-distributed stochastic neighbor embedding—to respond effectively to attacks on traffic data at each feature engineering stage,semi-supervised learning,and adaptive learning.Compared to other single-class classification techniques,the proposed DNN-based GANomaly achieves higher scores for Network Security Laboratory-Knowledge Discovery in Databases and UNSW-NB15 datasets at 13%and 8%of F1 scores and 4.17%and 11.51%for accuracy,respectively.Furthermore,experiments of the proposed adaptive learning reveal mostly improved results over the initial values.An analysis and monitoring system based on the combination of the three explainable methodologies is also described.Thus,the proposed method has the potential advantages to be applied in practical industry,and future research will explore handling unbalanced real-time datasets in various scenarios.展开更多
Fine-grained image classification is a challenging research topic because of the high degree of similarity among categories and the high degree of dissimilarity for a specific category caused by different poses and scal...Fine-grained image classification is a challenging research topic because of the high degree of similarity among categories and the high degree of dissimilarity for a specific category caused by different poses and scales.A cul-tural heritage image is one of thefine-grained images because each image has the same similarity in most cases.Using the classification technique,distinguishing cultural heritage architecture may be difficult.This study proposes a cultural heri-tage content retrieval method using adaptive deep learning forfine-grained image retrieval.The key contribution of this research was the creation of a retrieval mod-el that could handle incremental streams of new categories while maintaining its past performance in old categories and not losing the old categorization of a cul-tural heritage image.The goal of the proposed method is to perform a retrieval task for classes.Incremental learning for new classes was conducted to reduce the re-training process.In this step,the original class is not necessary for re-train-ing which we call an adaptive deep learning technique.Cultural heritage in the case of Thai archaeological site architecture was retrieved through machine learn-ing and image processing.We analyze the experimental results of incremental learning forfine-grained images with images of Thai archaeological site architec-ture from world heritage provinces in Thailand,which have a similar architecture.Using afine-grained image retrieval technique for this group of cultural heritage images in a database can solve the problem of a high degree of similarity among categories and a high degree of dissimilarity for a specific category.The proposed method for retrieving the correct image from a database can deliver an average accuracy of 85 percent.Adaptive deep learning forfine-grained image retrieval was used to retrieve cultural heritage content,and it outperformed state-of-the-art methods infine-grained image retrieval.展开更多
To avoid unstable learning, a stable adaptive learning algorithm was proposed for discrete-time recurrent neural networks. Unlike the dynamic gradient methods, such as the backpropagation through time and the real tim...To avoid unstable learning, a stable adaptive learning algorithm was proposed for discrete-time recurrent neural networks. Unlike the dynamic gradient methods, such as the backpropagation through time and the real time recurrent learning, the weights of the recurrent neural networks were updated online in terms of Lyapunov stability theory in the proposed learning algorithm, so the learning stability was guaranteed. With the inversion of the activation function of the recurrent neural networks, the proposed learning algorithm can be easily implemented for solving varying nonlinear adaptive learning problems and fast convergence of the adaptive learning process can be achieved. Simulation experiments in pattern recognition show that only 5 iterations are needed for the storage of a 15×15 binary image pattern and only 9 iterations are needed for the perfect realization of an analog vector by an equilibrium state with the proposed learning algorithm.展开更多
To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership functi...To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells.展开更多
In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring...In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP.展开更多
The recent emergence of adaptive language learning systems calls for conceptual work to guide the design of assessment and learning in an adaptive environment.Although adaptive learning might have been touted as a uni...The recent emergence of adaptive language learning systems calls for conceptual work to guide the design of assessment and learning in an adaptive environment.Although adaptive learning might have been touted as a universal cure for learning problems,many adaptive language learning systems fall short of educators’expectations,partly due to a lack of standards and best practices in this area.To fill this gap,this paper proposes some major considerations in designing a high-quality assessment and learning experience in adaptive learning and ways to evaluate an adaptive learning system.The architecture of adaptive learning is decomposed,with a chain of inferences supporting the overall efficacy of an adaptive learning system presented,including user property representation,user property estimation,content representation,user interaction representation,and user interaction impact.A detailed analysis of key validity issues is provided for each inference,which motivates the major considerations in designing and evaluating assessment and learning.The paper first provides an overview of different types of assessment used in adaptive learning and an analysis of the assessment approach,priorities,and design considerations of each to optimize its use in adaptive learning.Then it proposes a framework for evaluating different aspects of an adaptive learning system.Some special connections are made to models,techniques,designs,and technologies specific to language learning and assessment,bringing more relevance to adaptive language learning solutions.Through establishing some guidelines on key aspects to evaluate and how to evaluate them,the work intends to bring more rigor to the field of adaptive language learning systems.展开更多
The Thoracic Electrical Bioimpedance(TEB)helps to determine the stroke volume during cardiac arrest.While measuring cardiac signal it is contaminated with artifacts.The commonly encountered artifacts are Baseline wand...The Thoracic Electrical Bioimpedance(TEB)helps to determine the stroke volume during cardiac arrest.While measuring cardiac signal it is contaminated with artifacts.The commonly encountered artifacts are Baseline wander(BW)and Muscle artifact(MA),these are physiological and nonstationary.As the nature of these artifacts is random,adaptive filtering is needed than conventional fixed coefficient filtering techniques.To address this,a new block based adaptive learning scheme is proposed to remove artifacts from TEB signals in clinical scenario.The proposed block least mean square(BLMS)algorithm is mathematically normalized with reference to data and error.This normalization leads,block normalized LMS(BNLMS)and block error normalized LMS(BENLMS)algorithms.Various adaptive artifact cancellers are developed in both time and frequency domains and applied on real TEB quantities contaminated with physiological signals.The ability of these techniques is measured by calculating signal to noise ratio improvement(SNRI),Excess Mean Square Error(EMSE),and Misadjustment(Mad).Among the considered algorithms,the frequency domain version of BENLMS algorithm removes the physiological artifacts effectively then the other counter parts.Hence,this adaptive artifact canceller is suitable for real time applications like wearable,remove health care monitoring units.展开更多
As the field of artificial intelligence continues to evolve,so too does the application of multimodal learning analysis and intelligent adaptive learning systems.This trend has the potential to promote the equalizatio...As the field of artificial intelligence continues to evolve,so too does the application of multimodal learning analysis and intelligent adaptive learning systems.This trend has the potential to promote the equalization of educational resources,the intellectualization of educational methods,and the modernization of educational reform,among other benefits.This study proposes a construction framework for an intelligent adaptive learning system that is supported by multimodal data.It provides a detailed explanation of the system’s working principles and patterns,which aim to enhance learners’online engagement in behavior,emotion,and cognition.The study seeks to address the issue of intelligent adaptive learning systems diagnosing learners’learning behavior based solely on learning achievement,to improve learners’online engagement,enable them to master more required knowledge,and ultimately achieve better learning outcomes.展开更多
A test items knowledge library system of for adaptive learning is proposed in this paper. The first step is to carry out the quantity and quality analysis of the test items by using the Bloom's revised taxonomy and s...A test items knowledge library system of for adaptive learning is proposed in this paper. The first step is to carry out the quantity and quality analysis of the test items by using the Bloom's revised taxonomy and scale anchoring respectively to produce the characteristics for test items. A smoothing method of arbitrary anchoring revised from scale anchoring is first proposed to make tests more accurate in distinguishing test levels. In addition, raised three dimensional indicators based on the Bloom's revised taxonomy are adopted to validate test contents and therefore it concretely describes the examining function of items. The items obtained have the precise and concrete properties; an item knowledge library is therefore constructed combining teaching materials and items using the technologies of ontology and knowledge management. Finally, a knowledge library system of test items is established to achieve the purpose of adaptive learning for learners.展开更多
Finding a suitable space is one of the most critical problems for dimensionality reduction. Each space corresponds to a distance metric defined on the sample attributes, and thus finding a suitable space can be conver...Finding a suitable space is one of the most critical problems for dimensionality reduction. Each space corresponds to a distance metric defined on the sample attributes, and thus finding a suitable space can be converted to develop an effective distance metric. Most existing dimensionality reduction methods use a fixed pre-specified distance metric. However, this easy treatment has some limitations in practice due to the fact the pre-specified metric is not going to warranty that the closest samples are the truly similar ones. In this paper, we present an adaptive metric learning method for dimensionality reduction, called AML. The adaptive metric learning model is developed by maximizing the difference of the distances between the data pairs in cannot-links and those in must-links. Different from many existing papers that use the traditional Euclidean distance, we use the more generalized l<sub>2,p</sub>-norm distance to reduce sensitivity to noise and outliers, which incorporates additional flexibility and adaptability due to the selection of appropriate p-values for different data sets. Moreover, considering traditional metric learning methods usually project samples into a linear subspace, which is overstrict. We extend the basic linear method to a more powerful nonlinear kernel case so that well capturing complex nonlinear relationship between data. To solve our objective, we have derived an efficient iterative algorithm. Extensive experiments for dimensionality reduction are provided to demonstrate the superiority of our method over state-of-the-art approaches.展开更多
It can be challenging to detect tumor margins during surgery for complete resection.The purpose of this work is to develop a novel learning method that learns the difference between the tumor and benign tissue adaptiv...It can be challenging to detect tumor margins during surgery for complete resection.The purpose of this work is to develop a novel learning method that learns the difference between the tumor and benign tissue adaptively for cancer detection on hyperspectral images in an animal model.Specifically,an auto-encoder network is trained based on the wavelength bands on hyperspectral images to extract the deep information to create a pixel-wise prediction of cancerous and benign pixel.According to the output hypothesis of each pixel,the misclassified pixels would be reclassified in the right prediction direction based on their adaptive weights.The auto-encoder network is again trained based on these updated pixels.The learner can adaptively improve the ability to identify the cancer and benign tissue by focusing on the misclassified pixels,and thus can improve the detection performance.The adaptive deep learning method highlighting the tumor region proved to be accurate in detecting the tumor boundary on hyperspectral images and achieved a sensitivity of 92.32%and a specificity of 91.31%in our animal experiments.This adaptive learning method on hyperspectral imaging has the potential to provide a noninvasive tool for tumor detection,especially,for the tumor whose margin is indistinct and irregular.展开更多
基金Supported by the National Natural Science Foundation of China (60904018, 61203040)the Natural Science Foundation of Fujian Province of China (2009J05147, 2011J01352)+1 种基金the Foundation for Distinguished Young Scholars of Higher Education of Fujian Province of China (JA10004)the Science Research Foundation of Huaqiao University (09BS617)
文摘For accelerating the supervised learning by the SpikeProp algorithm with the temporal coding paradigm in spiking neural networks (SNNs), three learning rate adaptation methods (heuristic rule, delta-delta rule, and delta-bar-delta rule), which are used to speed up training in artificial neural networks, are used to develop the training algorithms for feedforward SNN. The performance of these algorithms is investigated by four experiments: classical XOR (exclusive or) problem, Iris dataset, fault diagnosis in the Tennessee Eastman process, and Poisson trains of discrete spikes. The results demonstrate that all the three learning rate adaptation methods are able to speed up convergence of SNN compared with the original SpikeProp algorithm. Furthermore, if the adaptive learning rate is used in combination with the momentum term, the two modifications will balance each other in a beneficial way to accomplish rapid and steady convergence. In the three learning rate adaptation methods, delta-bar-delta rule performs the best. The delta-bar-delta method with momentum has the fastest convergence rate, the greatest stability of training process, and the maximum accuracy of network learning. The proposed algorithms in this paper are simple and efficient, and consequently valuable for practical applications of SNN.
基金2024 Education and Teaching Reform Project of Hainan Tropical Ocean University(RHYxgnw2024-16)。
文摘This paper proposes teaching reforms in communication engineering majors,emphasizing the implementation of digital and adaptive teaching methodologies,integrating emerging technologies,breaking free from the constraints of traditional education,and fostering high-caliber talents.The reform measures encompass fundamental data collection,recognition of individual characteristics,recommendation of adaptive learning resources,process-oriented teaching management,adaptive student guidance and early warning systems,personalized evaluation,and the construction of an integrated service platform.These measures,when combined,form a comprehensive system that is expected to enhance teaching quality and efficiency,and facilitate student development.
基金The National Natural Science Foundation of China(No.60972001)the Science and Technology Plan of Suzhou City(No.SS201223)
文摘An adaptive topology learning approach is proposed to learn the topology of a practical camera network in an unsupervised way. The nodes are modeled by the Gaussian mixture model. The connectivity between nodes is judged by their cross-correlation function, which is also used to calculate their transition time distribution. The mutual information of the connected node pair is employed for transition probability calculation. A false link eliminating approach is proposed, along with a topology updating strategy to improve the learned topology. A real monitoring system with five disjoint cameras is built for experiments. Comparative results with traditional methods show that the proposed method is more accurate in topology learning and is more robust to environmental changes.
基金supported by the National Natural Science Foundation of China (Grant No. 60374015)
文摘In this paper, a learning control approach is applied to the generalized projective synchronisation (GPS) of different chaotic systems with unknown periodically time-varying parameters. Using the Lyapunov--Krasovskii functional stability theory, a differential-difference mixed parametric learning law and an adaptive learning control law are constructed to make the states of two different chaotic systems asymptotically synchronised. The scheme is successfully applied to the generalized projective synchronisation between the Lorenz system and Chen system. Moreover, numerical simulations results are used to verify the effectiveness of the proposed scheme.
基金supported by National Natural Science Foundation of China(No.60804021,No.60702063)
文摘An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper.
基金This work was supported by National Natural Science Foundation of China (No .60474038)
文摘In this paper, an optimal higher order learning adaptive control approach is developed for a class of SISO nonlinear systems. This design is model-free and depends directly on pseudo-partial-derivatives derived on-line from the input and output information of the system. A novel weighted one-step-ahead control criterion function is proposed for the control law. The convergence analysis shows that the proposed control law can guarantee the convergence under the assumption that the desired output is a set point. Simulation examples are provided for nonlinear systems to illustrate the better performance of the higher order learning adaptive control.
基金supported by the National Natural Science Foundation of China(61873013,61922007)。
文摘This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and analyze adaptive ILC,for which robust convergence analysis via a contraction mapping approach is realized by leveraging properties of substochastic matrices.It is shown that robust tracking tasks can be realized for optimization-based adaptive ILC,where the boundedness of system trajectories and estimated parameters can be ensured,regardless of unknown time-varying nonlinearities and nonrepetitive uncertainties.Two simulation tests,especially implemented for an injection molding process,demonstrate the effectiveness of our robust optimization-based ILC results.
文摘The adaptive learning and prediction of a highly nonlinear and time-varying bioreactor benchmark process is studied using Neur-On-Line, a graphical tool kit for developing and deploying neural networks in the G2 real time intelligent environment,and a new modified Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newton algorithm. The modified BFGS algorithm for the adaptive learning of back propagation (BP) neural networks is developed and embedded into NeurOn-Line by introducing a new search method of learning rate to the full memory BFGS algorithm. Simulation results show that the adaptive learning and prediction neural network system can quicklv track the time-varving and nonlinear behavior of the bioreactor.
基金supported by Grant-in-Aid for Scientific Research(C) (No. 20560248) of Japan
文摘Recently, various control methods represented by proportional-integral-derivative (PID) control are used for robotic control. To cope with the requirements for high response and precision, advanced feedforward controllers such as gravity compensator, Coriolis/centrifugal force compensator and friction compensators have been built in the controller. Generally, it causes heavy computational load when calculating the compensating value within a short sampling period. In this paper, integrated recurrent neural networks are applied as a feedforward controller for PUMA560 manipulator. The feedforward controller works instead of gravity and Coriolis/centrifugal force compensators. In the learning process of the neural network by using back propagation algorithm, the learning coefficient and gain of sigmoid function are tuned intuitively and empirically according to teaching signals. The tuning is complicated because it is being conducted by trial and error. Especially, when the scale of teaching signal is large, the problem becomes crucial. To cope with the problem which concerns the learning performance, a simple and adaptive learning technique for large scale teaching signals is proposed. The learning techniques and control effectiveness are evaluated through simulations using the dynamic model of PUMA560 manipulator.
基金supported by Korea Institute for Advancement of Technology(KIAT)grant funded by theKoreaGovernment(MOTIE)(P0008703,The CompetencyDevelopment Program for Industry Specialist).
文摘Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry.However,real-time training and classifying network traffic pose challenges,as they can lead to the degradation of the overall dataset and difficulties preventing attacks.Additionally,existing semi-supervised learning research might need to analyze the experimental results comprehensively.This paper proposes XA-GANomaly,a novel technique for explainable adaptive semi-supervised learning using GANomaly,an image anomalous detection model that dynamically trains small subsets to these issues.First,this research introduces a deep neural network(DNN)-based GANomaly for semi-supervised learning.Second,this paper presents the proposed adaptive algorithm for the DNN-based GANomaly,which is validated with four subsets of the adaptive dataset.Finally,this study demonstrates a monitoring system that incorporates three explainable techniques—Shapley additive explanations,reconstruction error visualization,and t-distributed stochastic neighbor embedding—to respond effectively to attacks on traffic data at each feature engineering stage,semi-supervised learning,and adaptive learning.Compared to other single-class classification techniques,the proposed DNN-based GANomaly achieves higher scores for Network Security Laboratory-Knowledge Discovery in Databases and UNSW-NB15 datasets at 13%and 8%of F1 scores and 4.17%and 11.51%for accuracy,respectively.Furthermore,experiments of the proposed adaptive learning reveal mostly improved results over the initial values.An analysis and monitoring system based on the combination of the three explainable methodologies is also described.Thus,the proposed method has the potential advantages to be applied in practical industry,and future research will explore handling unbalanced real-time datasets in various scenarios.
基金This research was funded by King Mongkut’s University of Technology North Bangkok(Contract no.KMUTNB-62-KNOW-026).
文摘Fine-grained image classification is a challenging research topic because of the high degree of similarity among categories and the high degree of dissimilarity for a specific category caused by different poses and scales.A cul-tural heritage image is one of thefine-grained images because each image has the same similarity in most cases.Using the classification technique,distinguishing cultural heritage architecture may be difficult.This study proposes a cultural heri-tage content retrieval method using adaptive deep learning forfine-grained image retrieval.The key contribution of this research was the creation of a retrieval mod-el that could handle incremental streams of new categories while maintaining its past performance in old categories and not losing the old categorization of a cul-tural heritage image.The goal of the proposed method is to perform a retrieval task for classes.Incremental learning for new classes was conducted to reduce the re-training process.In this step,the original class is not necessary for re-train-ing which we call an adaptive deep learning technique.Cultural heritage in the case of Thai archaeological site architecture was retrieved through machine learn-ing and image processing.We analyze the experimental results of incremental learning forfine-grained images with images of Thai archaeological site architec-ture from world heritage provinces in Thailand,which have a similar architecture.Using afine-grained image retrieval technique for this group of cultural heritage images in a database can solve the problem of a high degree of similarity among categories and a high degree of dissimilarity for a specific category.The proposed method for retrieving the correct image from a database can deliver an average accuracy of 85 percent.Adaptive deep learning forfine-grained image retrieval was used to retrieve cultural heritage content,and it outperformed state-of-the-art methods infine-grained image retrieval.
基金Project(50276005) supported by the National Natural Science Foundation of China Projects (2006CB705400, 2003CB716206) supported by National Basic Research Program of China
文摘To avoid unstable learning, a stable adaptive learning algorithm was proposed for discrete-time recurrent neural networks. Unlike the dynamic gradient methods, such as the backpropagation through time and the real time recurrent learning, the weights of the recurrent neural networks were updated online in terms of Lyapunov stability theory in the proposed learning algorithm, so the learning stability was guaranteed. With the inversion of the activation function of the recurrent neural networks, the proposed learning algorithm can be easily implemented for solving varying nonlinear adaptive learning problems and fast convergence of the adaptive learning process can be achieved. Simulation experiments in pattern recognition show that only 5 iterations are needed for the storage of a 15×15 binary image pattern and only 9 iterations are needed for the perfect realization of an analog vector by an equilibrium state with the proposed learning algorithm.
文摘To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells.
基金Supported by the National Natural Science Foundation of China(61273160)the Fundamental Research Funds for the Central Universities(14CX06067A,13CX05021A)
文摘In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP.
文摘The recent emergence of adaptive language learning systems calls for conceptual work to guide the design of assessment and learning in an adaptive environment.Although adaptive learning might have been touted as a universal cure for learning problems,many adaptive language learning systems fall short of educators’expectations,partly due to a lack of standards and best practices in this area.To fill this gap,this paper proposes some major considerations in designing a high-quality assessment and learning experience in adaptive learning and ways to evaluate an adaptive learning system.The architecture of adaptive learning is decomposed,with a chain of inferences supporting the overall efficacy of an adaptive learning system presented,including user property representation,user property estimation,content representation,user interaction representation,and user interaction impact.A detailed analysis of key validity issues is provided for each inference,which motivates the major considerations in designing and evaluating assessment and learning.The paper first provides an overview of different types of assessment used in adaptive learning and an analysis of the assessment approach,priorities,and design considerations of each to optimize its use in adaptive learning.Then it proposes a framework for evaluating different aspects of an adaptive learning system.Some special connections are made to models,techniques,designs,and technologies specific to language learning and assessment,bringing more relevance to adaptive language learning solutions.Through establishing some guidelines on key aspects to evaluate and how to evaluate them,the work intends to bring more rigor to the field of adaptive language learning systems.
文摘The Thoracic Electrical Bioimpedance(TEB)helps to determine the stroke volume during cardiac arrest.While measuring cardiac signal it is contaminated with artifacts.The commonly encountered artifacts are Baseline wander(BW)and Muscle artifact(MA),these are physiological and nonstationary.As the nature of these artifacts is random,adaptive filtering is needed than conventional fixed coefficient filtering techniques.To address this,a new block based adaptive learning scheme is proposed to remove artifacts from TEB signals in clinical scenario.The proposed block least mean square(BLMS)algorithm is mathematically normalized with reference to data and error.This normalization leads,block normalized LMS(BNLMS)and block error normalized LMS(BENLMS)algorithms.Various adaptive artifact cancellers are developed in both time and frequency domains and applied on real TEB quantities contaminated with physiological signals.The ability of these techniques is measured by calculating signal to noise ratio improvement(SNRI),Excess Mean Square Error(EMSE),and Misadjustment(Mad).Among the considered algorithms,the frequency domain version of BENLMS algorithm removes the physiological artifacts effectively then the other counter parts.Hence,this adaptive artifact canceller is suitable for real time applications like wearable,remove health care monitoring units.
文摘As the field of artificial intelligence continues to evolve,so too does the application of multimodal learning analysis and intelligent adaptive learning systems.This trend has the potential to promote the equalization of educational resources,the intellectualization of educational methods,and the modernization of educational reform,among other benefits.This study proposes a construction framework for an intelligent adaptive learning system that is supported by multimodal data.It provides a detailed explanation of the system’s working principles and patterns,which aim to enhance learners’online engagement in behavior,emotion,and cognition.The study seeks to address the issue of intelligent adaptive learning systems diagnosing learners’learning behavior based solely on learning achievement,to improve learners’online engagement,enable them to master more required knowledge,and ultimately achieve better learning outcomes.
文摘A test items knowledge library system of for adaptive learning is proposed in this paper. The first step is to carry out the quantity and quality analysis of the test items by using the Bloom's revised taxonomy and scale anchoring respectively to produce the characteristics for test items. A smoothing method of arbitrary anchoring revised from scale anchoring is first proposed to make tests more accurate in distinguishing test levels. In addition, raised three dimensional indicators based on the Bloom's revised taxonomy are adopted to validate test contents and therefore it concretely describes the examining function of items. The items obtained have the precise and concrete properties; an item knowledge library is therefore constructed combining teaching materials and items using the technologies of ontology and knowledge management. Finally, a knowledge library system of test items is established to achieve the purpose of adaptive learning for learners.
文摘Finding a suitable space is one of the most critical problems for dimensionality reduction. Each space corresponds to a distance metric defined on the sample attributes, and thus finding a suitable space can be converted to develop an effective distance metric. Most existing dimensionality reduction methods use a fixed pre-specified distance metric. However, this easy treatment has some limitations in practice due to the fact the pre-specified metric is not going to warranty that the closest samples are the truly similar ones. In this paper, we present an adaptive metric learning method for dimensionality reduction, called AML. The adaptive metric learning model is developed by maximizing the difference of the distances between the data pairs in cannot-links and those in must-links. Different from many existing papers that use the traditional Euclidean distance, we use the more generalized l<sub>2,p</sub>-norm distance to reduce sensitivity to noise and outliers, which incorporates additional flexibility and adaptability due to the selection of appropriate p-values for different data sets. Moreover, considering traditional metric learning methods usually project samples into a linear subspace, which is overstrict. We extend the basic linear method to a more powerful nonlinear kernel case so that well capturing complex nonlinear relationship between data. To solve our objective, we have derived an efficient iterative algorithm. Extensive experiments for dimensionality reduction are provided to demonstrate the superiority of our method over state-of-the-art approaches.
基金This work was supported in part by NIH grants(R01CA204254,R01HL140325,and R21CA231911).
文摘It can be challenging to detect tumor margins during surgery for complete resection.The purpose of this work is to develop a novel learning method that learns the difference between the tumor and benign tissue adaptively for cancer detection on hyperspectral images in an animal model.Specifically,an auto-encoder network is trained based on the wavelength bands on hyperspectral images to extract the deep information to create a pixel-wise prediction of cancerous and benign pixel.According to the output hypothesis of each pixel,the misclassified pixels would be reclassified in the right prediction direction based on their adaptive weights.The auto-encoder network is again trained based on these updated pixels.The learner can adaptively improve the ability to identify the cancer and benign tissue by focusing on the misclassified pixels,and thus can improve the detection performance.The adaptive deep learning method highlighting the tumor region proved to be accurate in detecting the tumor boundary on hyperspectral images and achieved a sensitivity of 92.32%and a specificity of 91.31%in our animal experiments.This adaptive learning method on hyperspectral imaging has the potential to provide a noninvasive tool for tumor detection,especially,for the tumor whose margin is indistinct and irregular.