BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are p...BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are pivotal in identifying the most suitable transplant candidates.Traditionally,scoring systems like the model for end-stage liver disease have been instrumental in this process.Nevertheless,the landscape of prognostication is undergoing a transformation with the integration of machine learning(ML)and artificial intelligence models.AIM To assess the utility of ML models in prognostication for LT,comparing their performance and reliability to established traditional scoring systems.METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines,we conducted a thorough and standardized literature search using the PubMed/MEDLINE database.Our search imposed no restrictions on publication year,age,or gender.Exclusion criteria encompassed non-English studies,review articles,case reports,conference papers,studies with missing data,or those exhibiting evident methodological flaws.RESULTS Our search yielded a total of 64 articles,with 23 meeting the inclusion criteria.Among the selected studies,60.8%originated from the United States and China combined.Only one pediatric study met the criteria.Notably,91%of the studies were published within the past five years.ML models consistently demonstrated satisfactory to excellent area under the receiver operating characteristic curve values(ranging from 0.6 to 1)across all studies,surpassing the performance of traditional scoring systems.Random forest exhibited superior predictive capabilities for 90-d mortality following LT,sepsis,and acute kidney injury(AKI).In contrast,gradient boosting excelled in predicting the risk of graft-versus-host disease,pneumonia,and AKI.CONCLUSION This study underscores the potential of ML models in guiding decisions related to allograft allocation and LT,marking a significant evolution in the field of prognostication.展开更多
Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient...Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions.展开更多
In the assessment of car insurance claims,the claim rate for car insurance presents a highly skewed probability distribution,which is typically modeled using Tweedie distribution.The traditional approach to obtaining ...In the assessment of car insurance claims,the claim rate for car insurance presents a highly skewed probability distribution,which is typically modeled using Tweedie distribution.The traditional approach to obtaining the Tweedie regression model involves training on a centralized dataset,when the data is provided by multiple parties,training a privacy-preserving Tweedie regression model without exchanging raw data becomes a challenge.To address this issue,this study introduces a novel vertical federated learning-based Tweedie regression algorithm for multi-party auto insurance rate setting in data silos.The algorithm can keep sensitive data locally and uses privacy-preserving techniques to achieve intersection operations between the two parties holding the data.After determining which entities are shared,the participants train the model locally using the shared entity data to obtain the local generalized linear model intermediate parameters.The homomorphic encryption algorithms are introduced to interact with and update the model intermediate parameters to collaboratively complete the joint training of the car insurance rate-setting model.Performance tests on two publicly available datasets show that the proposed federated Tweedie regression algorithm can effectively generate Tweedie regression models that leverage the value of data fromboth partieswithout exchanging data.The assessment results of the scheme approach those of the Tweedie regressionmodel learned fromcentralized data,and outperformthe Tweedie regressionmodel learned independently by a single party.展开更多
The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper ...The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper makes an attempt to assess landslide susceptibility in Shimla district of the northwest Indian Himalayan region.It examined the effectiveness of random forest(RF),multilayer perceptron(MLP),sequential minimal optimization regression(SMOreg)and bagging ensemble(B-RF,BSMOreg,B-MLP)models.A landslide inventory map comprising 1052 locations of past landslide occurrences was classified into training(70%)and testing(30%)datasets.The site-specific influencing factors were selected by employing a multicollinearity test.The relationship between past landslide occurrences and influencing factors was established using the frequency ratio method.The effectiveness of machine learning models was verified through performance assessors.The landslide susceptibility maps were validated by the area under the receiver operating characteristic curves(ROC-AUC),accuracy,precision,recall and F1-score.The key performance metrics and map validation demonstrated that the BRF model(correlation coefficient:0.988,mean absolute error:0.010,root mean square error:0.058,relative absolute error:2.964,ROC-AUC:0.947,accuracy:0.778,precision:0.819,recall:0.917 and F-1 score:0.865)outperformed the single classifiers and other bagging ensemble models for landslide susceptibility.The results show that the largest area was found under the very high susceptibility zone(33.87%),followed by the low(27.30%),high(20.68%)and moderate(18.16%)susceptibility zones.The factors,namely average annual rainfall,slope,lithology,soil texture and earthquake magnitude have been identified as the influencing factors for very high landslide susceptibility.Soil texture,lineament density and elevation have been attributed to high and moderate susceptibility.Thus,the study calls for devising suitable landslide mitigation measures in the study area.Structural measures,an immediate response system,community participation and coordination among stakeholders may help lessen the detrimental impact of landslides.The findings from this study could aid decision-makers in mitigating future catastrophes and devising suitable strategies in other geographical regions with similar geological characteristics.展开更多
The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera im...The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error.展开更多
BACKGROUND Colorectal cancer significantly impacts global health,with unplanned reoperations post-surgery being key determinants of patient outcomes.Existing predictive models for these reoperations lack precision in ...BACKGROUND Colorectal cancer significantly impacts global health,with unplanned reoperations post-surgery being key determinants of patient outcomes.Existing predictive models for these reoperations lack precision in integrating complex clinical data.AIM To develop and validate a machine learning model for predicting unplanned reoperation risk in colorectal cancer patients.METHODS Data of patients treated for colorectal cancer(n=2044)at the First Affiliated Hospital of Wenzhou Medical University and Wenzhou Central Hospital from March 2020 to March 2022 were retrospectively collected.Patients were divided into an experimental group(n=60)and a control group(n=1984)according to unplanned reoperation occurrence.Patients were also divided into a training group and a validation group(7:3 ratio).We used three different machine learning methods to screen characteristic variables.A nomogram was created based on multifactor logistic regression,and the model performance was assessed using receiver operating characteristic curve,calibration curve,Hosmer-Lemeshow test,and decision curve analysis.The risk scores of the two groups were calculated and compared to validate the model.RESULTS More patients in the experimental group were≥60 years old,male,and had a history of hypertension,laparotomy,and hypoproteinemia,compared to the control group.Multiple logistic regression analysis confirmed the following as independent risk factors for unplanned reoperation(P<0.05):Prognostic Nutritional Index value,history of laparotomy,hypertension,or stroke,hypoproteinemia,age,tumor-node-metastasis staging,surgical time,gender,and American Society of Anesthesiologists classification.Receiver operating characteristic curve analysis showed that the model had good discrimination and clinical utility.CONCLUSION This study used a machine learning approach to build a model that accurately predicts the risk of postoperative unplanned reoperation in patients with colorectal cancer,which can improve treatment decisions and prognosis.展开更多
AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hos...AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hospital from Spetember to December 2022 were included,and 13470 infrared pupil images were collected for the study.All infrared images for pupil segmentation were labeled using the Labelme software.The computation of pupil diameter is divided into four steps:image pre-processing,pupil identification and localization,pupil segmentation,and diameter calculation.Two major models are used in the computation process:the modified YoloV3 and Deeplabv 3+models,which must be trained beforehand.RESULTS:The test dataset included 1348 infrared pupil images.On the test dataset,the modified YoloV3 model had a detection rate of 99.98% and an average precision(AP)of 0.80 for pupils.The DeeplabV3+model achieved a background intersection over union(IOU)of 99.23%,a pupil IOU of 93.81%,and a mean IOU of 96.52%.The pupil diameters in the test dataset ranged from 20 to 56 pixels,with a mean of 36.06±6.85 pixels.The absolute error in pupil diameters between predicted and actual values ranged from 0 to 7 pixels,with a mean absolute error(MAE)of 1.06±0.96 pixels.CONCLUSION:This study successfully demonstrates a robust infrared image-based pupil diameter measurement algorithm,proven to be highly accurate and reliable for clinical application.展开更多
In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,ma...In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications.展开更多
Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly di...Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly diminishes wheat yield,making the early and precise identification of these diseases vital for effective disease management.With advancements in deep learning algorithms,researchers have proposed many methods for the automated detection of disease pathogens;however,accurately detectingmultiple disease pathogens simultaneously remains a challenge.This challenge arises due to the scarcity of RGB images for multiple diseases,class imbalance in existing public datasets,and the difficulty in extracting features that discriminate between multiple classes of disease pathogens.In this research,a novel method is proposed based on Transfer Generative Adversarial Networks for augmenting existing data,thereby overcoming the problems of class imbalance and data scarcity.This study proposes a customized architecture of Vision Transformers(ViT),where the feature vector is obtained by concatenating features extracted from the custom ViT and Graph Neural Networks.This paper also proposes a Model AgnosticMeta Learning(MAML)based ensemble classifier for accurate classification.The proposedmodel,validated on public datasets for wheat disease pathogen classification,achieved a test accuracy of 99.20%and an F1-score of 97.95%.Compared with existing state-of-the-art methods,this proposed model outperforms in terms of accuracy,F1-score,and the number of disease pathogens detection.In future,more diseases can be included for detection along with some other modalities like pests and weed.展开更多
The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on ...The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades.展开更多
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ...This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models.展开更多
The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatia...The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research.In this study,we propose a new data-driven approach,leveraging deep learning techniques,for the prediction of sound velocity fields(SVFs).Our novel spatiotemporal prediction model,STLSTM-SA,combines Spatiotemporal Long Short-Term Memory(ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs.To circumvent the limited amount of observational data,we employ transfer learning by first training the model using reanalysis datasets,followed by fine-tuning it using in-situ analysis data to obtain the final prediction model.By utilizing the historical 12-month SVFs as input,our model predicts the SVFs for the subsequent three months.We compare the performance of five models:Artificial Neural Networks(ANN),Long ShortTerm Memory(LSTM),Convolutional LSTM(ConvLSTM),ST-LSTM,and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022.Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions.The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field(SVF),but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables.展开更多
As some recent information security legislation endowed users with unconditional rights to be forgotten by any trained machine learning model,personalised IoT service pro-viders have to put unlearning functionality in...As some recent information security legislation endowed users with unconditional rights to be forgotten by any trained machine learning model,personalised IoT service pro-viders have to put unlearning functionality into their consideration.The most straight-forward method to unlearn users'contribution is to retrain the model from the initial state,which is not realistic in high throughput applications with frequent unlearning requests.Though some machine unlearning frameworks have been proposed to speed up the retraining process,they fail to match decentralised learning scenarios.A decentralised unlearning framework called heterogeneous decentralised unlearning framework with seed(HDUS)is designed,which uses distilled seed models to construct erasable en-sembles for all clients.Moreover,the framework is compatible with heterogeneous on-device models,representing stronger scalability in real-world applications.Extensive experiments on three real-world datasets show that our HDUS achieves state-of-the-art performance.展开更多
BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel(SB)capsule endoscopy(CE)that can assist physicians in diagnosis.However,the existing deep learning models present some ...BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel(SB)capsule endoscopy(CE)that can assist physicians in diagnosis.However,the existing deep learning models present some unresolved challenges.AIM To propose a novel and effective classification and detection model to automatically identify various SB lesions and their bleeding risks,and label the lesions accurately so as to enhance the diagnostic efficiency of physicians and the ability to identify high-risk bleeding groups.METHODS The proposed model represents a two-stage method that combined image classification with object detection.First,we utilized the improved ResNet-50 classification model to classify endoscopic images into SB lesion images,normal SB mucosa images,and invalid images.Then,the improved YOLO-V5 detection model was utilized to detect the type of lesion and its risk of bleeding,and the location of the lesion was marked.We constructed training and testing sets and compared model-assisted reading with physician reading.RESULTS The accuracy of the model constructed in this study reached 98.96%,which was higher than the accuracy of other systems using only a single module.The sensitivity,specificity,and accuracy of the model-assisted reading detection of all images were 99.17%,99.92%,and 99.86%,which were significantly higher than those of the endoscopists’diagnoses.The image processing time of the model was 48 ms/image,and the image processing time of the physicians was 0.40±0.24 s/image(P<0.001).CONCLUSION The deep learning model of image classification combined with object detection exhibits a satisfactory diagnostic effect on a variety of SB lesions and their bleeding risks in CE images,which enhances the diagnostic efficiency of physicians and improves the ability of physicians to identify high-risk bleeding groups.展开更多
Cyberspace is extremely dynamic,with new attacks arising daily.Protecting cybersecurity controls is vital for network security.Deep Learning(DL)models find widespread use across various fields,with cybersecurity being...Cyberspace is extremely dynamic,with new attacks arising daily.Protecting cybersecurity controls is vital for network security.Deep Learning(DL)models find widespread use across various fields,with cybersecurity being one of the most crucial due to their rapid cyberattack detection capabilities on networks and hosts.The capabilities of DL in feature learning and analyzing extensive data volumes lead to the recognition of network traffic patterns.This study presents novel lightweight DL models,known as Cybernet models,for the detection and recognition of various cyber Distributed Denial of Service(DDoS)attacks.These models were constructed to have a reasonable number of learnable parameters,i.e.,less than 225,000,hence the name“lightweight.”This not only helps reduce the number of computations required but also results in faster training and inference times.Additionally,these models were designed to extract features in parallel from 1D Convolutional Neural Networks(CNN)and Long Short-Term Memory(LSTM),which makes them unique compared to earlier existing architectures and results in better performance measures.To validate their robustness and effectiveness,they were tested on the CIC-DDoS2019 dataset,which is an imbalanced and large dataset that contains different types of DDoS attacks.Experimental results revealed that bothmodels yielded promising results,with 99.99% for the detectionmodel and 99.76% for the recognition model in terms of accuracy,precision,recall,and F1 score.Furthermore,they outperformed the existing state-of-the-art models proposed for the same task.Thus,the proposed models can be used in cyber security research domains to successfully identify different types of attacks with a high detection and recognition rate.展开更多
BACKGROUND Liver cancer is one of the most prevalent malignant tumors worldwide,and its early detection and treatment are crucial for enhancing patient survival rates and quality of life.However,the early symptoms of ...BACKGROUND Liver cancer is one of the most prevalent malignant tumors worldwide,and its early detection and treatment are crucial for enhancing patient survival rates and quality of life.However,the early symptoms of liver cancer are often not obvious,resulting in a late-stage diagnosis in many patients,which significantly reduces the effectiveness of treatment.Developing a highly targeted,widely applicable,and practical risk prediction model for liver cancer is crucial for enhancing the early diagnosis and long-term survival rates among affected individuals.AIM To develop a liver cancer risk prediction model by employing machine learning techniques,and subsequently assess its performance.METHODS In this study,a total of 550 patients were enrolled,with 190 hepatocellular carcinoma(HCC)and 195 cirrhosis patients serving as the training cohort,and 83 HCC and 82 cirrhosis patients forming the validation cohort.Logistic regression(LR),support vector machine(SVM),random forest(RF),and least absolute shrinkage and selection operator(LASSO)regression models were developed in the training cohort.Model performance was assessed in the validation cohort.Additionally,this study conducted a comparative evaluation of the diagnostic efficacy between the ASAP model and the model developed in this study using receiver operating characteristic curve,calibration curve,and decision curve analysis(DCA)to determine the optimal predictive model for assessing liver cancer risk.RESULTS Six variables including age,white blood cell,red blood cell,platelet counts,alpha-fetoprotein and protein induced by vitamin K absence or antagonist II levels were used to develop LR,SVM,RF,and LASSO regression models.The RF model exhibited superior discrimination,and the area under curve of the training and validation sets was 0.969 and 0.858,respectively.These values significantly surpassed those of the LR(0.850 and 0.827),SVM(0.860 and 0.803),LASSO regression(0.845 and 0.831),and ASAP(0.866 and 0.813)models.Furthermore,calibration and DCA indicated that the RF model exhibited robust calibration and clinical validity.CONCLUSION The RF model demonstrated excellent prediction capabilities for HCC and can facilitate early diagnosis of HCC in clinical practice.展开更多
BACKGROUND Surgical resection remains the primary treatment for hepatic malignancies,and intraoperative bleeding is associated with a significantly increased risk of death.Therefore,accurate prediction of intraoperati...BACKGROUND Surgical resection remains the primary treatment for hepatic malignancies,and intraoperative bleeding is associated with a significantly increased risk of death.Therefore,accurate prediction of intraoperative bleeding risk in patients with hepatic malignancies is essential to preventing bleeding in advance and providing safer and more effective treatment.AIM To develop a predictive model for intraoperative bleeding in primary hepatic malignancy patients for improving surgical planning and outcomes.METHODS The retrospective analysis enrolled patients diagnosed with primary hepatic malignancies who underwent surgery at the Hepatobiliary Surgery Department of the Fourth Hospital of Hebei Medical University between 2010 and 2020.Logistic regression analysis was performed to identify potential risk factors for intraoperative bleeding.A prediction model was developed using Python programming language,and its accuracy was evaluated using receiver operating characteristic(ROC)curve analysis.RESULTS Among 406 primary liver cancer patients,16.0%(65/406)suffered massive intraoperative bleeding.Logistic regression analysis identified four variables as associated with intraoperative bleeding in these patients:ascites[odds ratio(OR):22.839;P<0.05],history of alcohol consumption(OR:2.950;P<0.015),TNM staging(OR:2.441;P<0.001),and albumin-bilirubin score(OR:2.361;P<0.001).These variables were used to construct the prediction model.The 406 patients were randomly assigned to a training set(70%)and a prediction set(30%).The area under the ROC curve values for the model’s ability to predict intraoperative bleeding were 0.844 in the training set and 0.80 in the prediction set.CONCLUSION The developed and validated model predicts significant intraoperative blood loss in primary hepatic malignancies using four preoperative clinical factors by considering four preoperative clinical factors:ascites,history of alcohol consumption,TNM staging,and albumin-bilirubin score.Consequently,this model holds promise for enhancing individualised surgical planning.展开更多
Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods...Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods still need to solve this problem despite the numerous available approaches. Precise analysis of Magnetic Resonance Imaging (MRI) is crucial for detecting, segmenting, and classifying brain tumours in medical diagnostics. Magnetic Resonance Imaging is a vital component in medical diagnosis, and it requires precise, efficient, careful, efficient, and reliable image analysis techniques. The authors developed a Deep Learning (DL) fusion model to classify brain tumours reliably. Deep Learning models require large amounts of training data to achieve good results, so the researchers utilised data augmentation techniques to increase the dataset size for training models. VGG16, ResNet50, and convolutional deep belief networks networks extracted deep features from MRI images. Softmax was used as the classifier, and the training set was supplemented with intentionally created MRI images of brain tumours in addition to the genuine ones. The features of two DL models were combined in the proposed model to generate a fusion model, which significantly increased classification accuracy. An openly accessible dataset from the internet was used to test the model's performance, and the experimental results showed that the proposed fusion model achieved a classification accuracy of 98.98%. Finally, the results were compared with existing methods, and the proposed model outperformed them significantly.展开更多
In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory...In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.展开更多
BACKGROUND Liver transplant(LT)patients have become older and sicker.The rate of post-LT major adverse cardiovascular events(MACE)has increased,and this in turn raises 30-d post-LT mortality.Noninvasive cardiac stress...BACKGROUND Liver transplant(LT)patients have become older and sicker.The rate of post-LT major adverse cardiovascular events(MACE)has increased,and this in turn raises 30-d post-LT mortality.Noninvasive cardiac stress testing loses accuracy when applied to pre-LT cirrhotic patients.AIM To assess the feasibility and accuracy of a machine learning model used to predict post-LT MACE in a regional cohort.METHODS This retrospective cohort study involved 575 LT patients from a Southern Brazilian academic center.We developed a predictive model for post-LT MACE(defined as a composite outcome of stroke,new-onset heart failure,severe arrhythmia,and myocardial infarction)using the extreme gradient boosting(XGBoost)machine learning model.We addressed missing data(below 20%)for relevant variables using the k-nearest neighbor imputation method,calculating the mean from the ten nearest neighbors for each case.The modeling dataset included 83 features,encompassing patient and laboratory data,cirrhosis complications,and pre-LT cardiac assessments.Model performance was assessed using the area under the receiver operating characteristic curve(AUROC).We also employed Shapley additive explanations(SHAP)to interpret feature impacts.The dataset was split into training(75%)and testing(25%)sets.Calibration was evaluated using the Brier score.We followed Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis guidelines for reporting.Scikit-learn and SHAP in Python 3 were used for all analyses.The supplementary material includes code for model development and a user-friendly online MACE prediction calculator.RESULTS Of the 537 included patients,23(4.46%)developed in-hospital MACE,with a mean age at transplantation of 52.9 years.The majority,66.1%,were male.The XGBoost model achieved an impressive AUROC of 0.89 during the training stage.This model exhibited accuracy,precision,recall,and F1-score values of 0.84,0.85,0.80,and 0.79,respectively.Calibration,as assessed by the Brier score,indicated excellent model calibration with a score of 0.07.Furthermore,SHAP values highlighted the significance of certain variables in predicting postoperative MACE,with negative noninvasive cardiac stress testing,use of nonselective beta-blockers,direct bilirubin levels,blood type O,and dynamic alterations on myocardial perfusion scintigraphy being the most influential factors at the cohort-wide level.These results highlight the predictive capability of our XGBoost model in assessing the risk of post-LT MACE,making it a valuable tool for clinical practice.CONCLUSION Our study successfully assessed the feasibility and accuracy of the XGBoost machine learning model in predicting post-LT MACE,using both cardiovascular and hepatic variables.The model demonstrated impressive performance,aligning with literature findings,and exhibited excellent calibration.Notably,our cautious approach to prevent overfitting and data leakage suggests the stability of results when applied to prospective data,reinforcing the model’s value as a reliable tool for predicting post-LT MACE in clinical practice.展开更多
文摘BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are pivotal in identifying the most suitable transplant candidates.Traditionally,scoring systems like the model for end-stage liver disease have been instrumental in this process.Nevertheless,the landscape of prognostication is undergoing a transformation with the integration of machine learning(ML)and artificial intelligence models.AIM To assess the utility of ML models in prognostication for LT,comparing their performance and reliability to established traditional scoring systems.METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines,we conducted a thorough and standardized literature search using the PubMed/MEDLINE database.Our search imposed no restrictions on publication year,age,or gender.Exclusion criteria encompassed non-English studies,review articles,case reports,conference papers,studies with missing data,or those exhibiting evident methodological flaws.RESULTS Our search yielded a total of 64 articles,with 23 meeting the inclusion criteria.Among the selected studies,60.8%originated from the United States and China combined.Only one pediatric study met the criteria.Notably,91%of the studies were published within the past five years.ML models consistently demonstrated satisfactory to excellent area under the receiver operating characteristic curve values(ranging from 0.6 to 1)across all studies,surpassing the performance of traditional scoring systems.Random forest exhibited superior predictive capabilities for 90-d mortality following LT,sepsis,and acute kidney injury(AKI).In contrast,gradient boosting excelled in predicting the risk of graft-versus-host disease,pneumonia,and AKI.CONCLUSION This study underscores the potential of ML models in guiding decisions related to allograft allocation and LT,marking a significant evolution in the field of prognostication.
基金supported by the Natural Science Foundation of China(Grant Nos.42088101 and 42205149)Zhongwang WEI was supported by the Natural Science Foundation of China(Grant No.42075158)+1 种基金Wei SHANGGUAN was supported by the Natural Science Foundation of China(Grant No.41975122)Yonggen ZHANG was supported by the National Natural Science Foundation of Tianjin(Grant No.20JCQNJC01660).
文摘Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions.
基金This research was funded by the National Natural Science Foundation of China(No.62272124)the National Key Research and Development Program of China(No.2022YFB2701401)+3 种基金Guizhou Province Science and Technology Plan Project(Grant Nos.Qiankehe Paltform Talent[2020]5017)The Research Project of Guizhou University for Talent Introduction(No.[2020]61)the Cultivation Project of Guizhou University(No.[2019]56)the Open Fund of Key Laboratory of Advanced Manufacturing Technology,Ministry of Education(GZUAMT2021KF[01]).
文摘In the assessment of car insurance claims,the claim rate for car insurance presents a highly skewed probability distribution,which is typically modeled using Tweedie distribution.The traditional approach to obtaining the Tweedie regression model involves training on a centralized dataset,when the data is provided by multiple parties,training a privacy-preserving Tweedie regression model without exchanging raw data becomes a challenge.To address this issue,this study introduces a novel vertical federated learning-based Tweedie regression algorithm for multi-party auto insurance rate setting in data silos.The algorithm can keep sensitive data locally and uses privacy-preserving techniques to achieve intersection operations between the two parties holding the data.After determining which entities are shared,the participants train the model locally using the shared entity data to obtain the local generalized linear model intermediate parameters.The homomorphic encryption algorithms are introduced to interact with and update the model intermediate parameters to collaboratively complete the joint training of the car insurance rate-setting model.Performance tests on two publicly available datasets show that the proposed federated Tweedie regression algorithm can effectively generate Tweedie regression models that leverage the value of data fromboth partieswithout exchanging data.The assessment results of the scheme approach those of the Tweedie regressionmodel learned fromcentralized data,and outperformthe Tweedie regressionmodel learned independently by a single party.
文摘The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper makes an attempt to assess landslide susceptibility in Shimla district of the northwest Indian Himalayan region.It examined the effectiveness of random forest(RF),multilayer perceptron(MLP),sequential minimal optimization regression(SMOreg)and bagging ensemble(B-RF,BSMOreg,B-MLP)models.A landslide inventory map comprising 1052 locations of past landslide occurrences was classified into training(70%)and testing(30%)datasets.The site-specific influencing factors were selected by employing a multicollinearity test.The relationship between past landslide occurrences and influencing factors was established using the frequency ratio method.The effectiveness of machine learning models was verified through performance assessors.The landslide susceptibility maps were validated by the area under the receiver operating characteristic curves(ROC-AUC),accuracy,precision,recall and F1-score.The key performance metrics and map validation demonstrated that the BRF model(correlation coefficient:0.988,mean absolute error:0.010,root mean square error:0.058,relative absolute error:2.964,ROC-AUC:0.947,accuracy:0.778,precision:0.819,recall:0.917 and F-1 score:0.865)outperformed the single classifiers and other bagging ensemble models for landslide susceptibility.The results show that the largest area was found under the very high susceptibility zone(33.87%),followed by the low(27.30%),high(20.68%)and moderate(18.16%)susceptibility zones.The factors,namely average annual rainfall,slope,lithology,soil texture and earthquake magnitude have been identified as the influencing factors for very high landslide susceptibility.Soil texture,lineament density and elevation have been attributed to high and moderate susceptibility.Thus,the study calls for devising suitable landslide mitigation measures in the study area.Structural measures,an immediate response system,community participation and coordination among stakeholders may help lessen the detrimental impact of landslides.The findings from this study could aid decision-makers in mitigating future catastrophes and devising suitable strategies in other geographical regions with similar geological characteristics.
基金supported in part by the Gusu Innovation and Entrepreneurship Leading Talents in Suzhou City,grant numbers ZXL2021425 and ZXL2022476Doctor of Innovation and Entrepreneurship Program in Jiangsu Province,grant number JSSCBS20211440+6 种基金Jiangsu Province Key R&D Program,grant number BE2019682Natural Science Foundation of Jiangsu Province,grant number BK20200214National Key R&D Program of China,grant number 2017YFB0403701National Natural Science Foundation of China,grant numbers 61605210,61675226,and 62075235Youth Innovation Promotion Association of Chinese Academy of Sciences,grant number 2019320Frontier Science Research Project of the Chinese Academy of Sciences,grant number QYZDB-SSW-JSC03Strategic Priority Research Program of the Chinese Academy of Sciences,grant number XDB02060000.
文摘The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error.
基金This study has been reviewed and approved by the Clinical Research Ethics Committee of Wenzhou Central Hospital and the First Hospital Affiliated to Wenzhou Medical University,No.KY2024-R016.
文摘BACKGROUND Colorectal cancer significantly impacts global health,with unplanned reoperations post-surgery being key determinants of patient outcomes.Existing predictive models for these reoperations lack precision in integrating complex clinical data.AIM To develop and validate a machine learning model for predicting unplanned reoperation risk in colorectal cancer patients.METHODS Data of patients treated for colorectal cancer(n=2044)at the First Affiliated Hospital of Wenzhou Medical University and Wenzhou Central Hospital from March 2020 to March 2022 were retrospectively collected.Patients were divided into an experimental group(n=60)and a control group(n=1984)according to unplanned reoperation occurrence.Patients were also divided into a training group and a validation group(7:3 ratio).We used three different machine learning methods to screen characteristic variables.A nomogram was created based on multifactor logistic regression,and the model performance was assessed using receiver operating characteristic curve,calibration curve,Hosmer-Lemeshow test,and decision curve analysis.The risk scores of the two groups were calculated and compared to validate the model.RESULTS More patients in the experimental group were≥60 years old,male,and had a history of hypertension,laparotomy,and hypoproteinemia,compared to the control group.Multiple logistic regression analysis confirmed the following as independent risk factors for unplanned reoperation(P<0.05):Prognostic Nutritional Index value,history of laparotomy,hypertension,or stroke,hypoproteinemia,age,tumor-node-metastasis staging,surgical time,gender,and American Society of Anesthesiologists classification.Receiver operating characteristic curve analysis showed that the model had good discrimination and clinical utility.CONCLUSION This study used a machine learning approach to build a model that accurately predicts the risk of postoperative unplanned reoperation in patients with colorectal cancer,which can improve treatment decisions and prognosis.
文摘AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hospital from Spetember to December 2022 were included,and 13470 infrared pupil images were collected for the study.All infrared images for pupil segmentation were labeled using the Labelme software.The computation of pupil diameter is divided into four steps:image pre-processing,pupil identification and localization,pupil segmentation,and diameter calculation.Two major models are used in the computation process:the modified YoloV3 and Deeplabv 3+models,which must be trained beforehand.RESULTS:The test dataset included 1348 infrared pupil images.On the test dataset,the modified YoloV3 model had a detection rate of 99.98% and an average precision(AP)of 0.80 for pupils.The DeeplabV3+model achieved a background intersection over union(IOU)of 99.23%,a pupil IOU of 93.81%,and a mean IOU of 96.52%.The pupil diameters in the test dataset ranged from 20 to 56 pixels,with a mean of 36.06±6.85 pixels.The absolute error in pupil diameters between predicted and actual values ranged from 0 to 7 pixels,with a mean absolute error(MAE)of 1.06±0.96 pixels.CONCLUSION:This study successfully demonstrates a robust infrared image-based pupil diameter measurement algorithm,proven to be highly accurate and reliable for clinical application.
基金supported by the National Natural Science Foundation of China(Grant Nos.41976193 and 42176243).
文摘In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications.
基金Researchers Supporting Project Number(RSPD2024R 553),King Saud University,Riyadh,Saudi Arabia.
文摘Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly diminishes wheat yield,making the early and precise identification of these diseases vital for effective disease management.With advancements in deep learning algorithms,researchers have proposed many methods for the automated detection of disease pathogens;however,accurately detectingmultiple disease pathogens simultaneously remains a challenge.This challenge arises due to the scarcity of RGB images for multiple diseases,class imbalance in existing public datasets,and the difficulty in extracting features that discriminate between multiple classes of disease pathogens.In this research,a novel method is proposed based on Transfer Generative Adversarial Networks for augmenting existing data,thereby overcoming the problems of class imbalance and data scarcity.This study proposes a customized architecture of Vision Transformers(ViT),where the feature vector is obtained by concatenating features extracted from the custom ViT and Graph Neural Networks.This paper also proposes a Model AgnosticMeta Learning(MAML)based ensemble classifier for accurate classification.The proposedmodel,validated on public datasets for wheat disease pathogen classification,achieved a test accuracy of 99.20%and an F1-score of 97.95%.Compared with existing state-of-the-art methods,this proposed model outperforms in terms of accuracy,F1-score,and the number of disease pathogens detection.In future,more diseases can be included for detection along with some other modalities like pests and weed.
基金supported by the National Science Foundation of China(Grant Nos.52068049 and 51908266)the Science Fund for Distinguished Young Scholars of Gansu Province(No.21JR7RA267)Hongliu Outstanding Young Talents Program of Lanzhou University of Technology.
文摘The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades.
基金the National Key R&D Program of China(No.2021YFB3701705).
文摘This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models.
基金supported by the National Natural Science Foundation of China(Grant No.42004030)Basic Scientific Fund for National Public Research Institutes of China(Grant No.2022S03)+1 种基金Science and Technology Innovation Project(LSKJ202205102)funded by Laoshan Laboratory,and the National Key Research and Development Program of China(2020YFB0505805).
文摘The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research.In this study,we propose a new data-driven approach,leveraging deep learning techniques,for the prediction of sound velocity fields(SVFs).Our novel spatiotemporal prediction model,STLSTM-SA,combines Spatiotemporal Long Short-Term Memory(ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs.To circumvent the limited amount of observational data,we employ transfer learning by first training the model using reanalysis datasets,followed by fine-tuning it using in-situ analysis data to obtain the final prediction model.By utilizing the historical 12-month SVFs as input,our model predicts the SVFs for the subsequent three months.We compare the performance of five models:Artificial Neural Networks(ANN),Long ShortTerm Memory(LSTM),Convolutional LSTM(ConvLSTM),ST-LSTM,and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022.Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions.The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field(SVF),but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables.
基金Australian Research Council,Grant/Award Numbers:FT210100624,DP190101985,DE230101033。
文摘As some recent information security legislation endowed users with unconditional rights to be forgotten by any trained machine learning model,personalised IoT service pro-viders have to put unlearning functionality into their consideration.The most straight-forward method to unlearn users'contribution is to retrain the model from the initial state,which is not realistic in high throughput applications with frequent unlearning requests.Though some machine unlearning frameworks have been proposed to speed up the retraining process,they fail to match decentralised learning scenarios.A decentralised unlearning framework called heterogeneous decentralised unlearning framework with seed(HDUS)is designed,which uses distilled seed models to construct erasable en-sembles for all clients.Moreover,the framework is compatible with heterogeneous on-device models,representing stronger scalability in real-world applications.Extensive experiments on three real-world datasets show that our HDUS achieves state-of-the-art performance.
基金The Shanxi Provincial Administration of Traditional Chinese Medicine,No.2023ZYYDA2005.
文摘BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel(SB)capsule endoscopy(CE)that can assist physicians in diagnosis.However,the existing deep learning models present some unresolved challenges.AIM To propose a novel and effective classification and detection model to automatically identify various SB lesions and their bleeding risks,and label the lesions accurately so as to enhance the diagnostic efficiency of physicians and the ability to identify high-risk bleeding groups.METHODS The proposed model represents a two-stage method that combined image classification with object detection.First,we utilized the improved ResNet-50 classification model to classify endoscopic images into SB lesion images,normal SB mucosa images,and invalid images.Then,the improved YOLO-V5 detection model was utilized to detect the type of lesion and its risk of bleeding,and the location of the lesion was marked.We constructed training and testing sets and compared model-assisted reading with physician reading.RESULTS The accuracy of the model constructed in this study reached 98.96%,which was higher than the accuracy of other systems using only a single module.The sensitivity,specificity,and accuracy of the model-assisted reading detection of all images were 99.17%,99.92%,and 99.86%,which were significantly higher than those of the endoscopists’diagnoses.The image processing time of the model was 48 ms/image,and the image processing time of the physicians was 0.40±0.24 s/image(P<0.001).CONCLUSION The deep learning model of image classification combined with object detection exhibits a satisfactory diagnostic effect on a variety of SB lesions and their bleeding risks in CE images,which enhances the diagnostic efficiency of physicians and improves the ability of physicians to identify high-risk bleeding groups.
文摘Cyberspace is extremely dynamic,with new attacks arising daily.Protecting cybersecurity controls is vital for network security.Deep Learning(DL)models find widespread use across various fields,with cybersecurity being one of the most crucial due to their rapid cyberattack detection capabilities on networks and hosts.The capabilities of DL in feature learning and analyzing extensive data volumes lead to the recognition of network traffic patterns.This study presents novel lightweight DL models,known as Cybernet models,for the detection and recognition of various cyber Distributed Denial of Service(DDoS)attacks.These models were constructed to have a reasonable number of learnable parameters,i.e.,less than 225,000,hence the name“lightweight.”This not only helps reduce the number of computations required but also results in faster training and inference times.Additionally,these models were designed to extract features in parallel from 1D Convolutional Neural Networks(CNN)and Long Short-Term Memory(LSTM),which makes them unique compared to earlier existing architectures and results in better performance measures.To validate their robustness and effectiveness,they were tested on the CIC-DDoS2019 dataset,which is an imbalanced and large dataset that contains different types of DDoS attacks.Experimental results revealed that bothmodels yielded promising results,with 99.99% for the detectionmodel and 99.76% for the recognition model in terms of accuracy,precision,recall,and F1 score.Furthermore,they outperformed the existing state-of-the-art models proposed for the same task.Thus,the proposed models can be used in cyber security research domains to successfully identify different types of attacks with a high detection and recognition rate.
基金Cuiying Scientific and Technological Innovation Program of the Second Hospital,No.CY2021-BJ-A16 and No.CY2022-QN-A18Clinical Medical School of Lanzhou University and Lanzhou Science and Technology Development Guidance Plan Project,No.2023-ZD-85.
文摘BACKGROUND Liver cancer is one of the most prevalent malignant tumors worldwide,and its early detection and treatment are crucial for enhancing patient survival rates and quality of life.However,the early symptoms of liver cancer are often not obvious,resulting in a late-stage diagnosis in many patients,which significantly reduces the effectiveness of treatment.Developing a highly targeted,widely applicable,and practical risk prediction model for liver cancer is crucial for enhancing the early diagnosis and long-term survival rates among affected individuals.AIM To develop a liver cancer risk prediction model by employing machine learning techniques,and subsequently assess its performance.METHODS In this study,a total of 550 patients were enrolled,with 190 hepatocellular carcinoma(HCC)and 195 cirrhosis patients serving as the training cohort,and 83 HCC and 82 cirrhosis patients forming the validation cohort.Logistic regression(LR),support vector machine(SVM),random forest(RF),and least absolute shrinkage and selection operator(LASSO)regression models were developed in the training cohort.Model performance was assessed in the validation cohort.Additionally,this study conducted a comparative evaluation of the diagnostic efficacy between the ASAP model and the model developed in this study using receiver operating characteristic curve,calibration curve,and decision curve analysis(DCA)to determine the optimal predictive model for assessing liver cancer risk.RESULTS Six variables including age,white blood cell,red blood cell,platelet counts,alpha-fetoprotein and protein induced by vitamin K absence or antagonist II levels were used to develop LR,SVM,RF,and LASSO regression models.The RF model exhibited superior discrimination,and the area under curve of the training and validation sets was 0.969 and 0.858,respectively.These values significantly surpassed those of the LR(0.850 and 0.827),SVM(0.860 and 0.803),LASSO regression(0.845 and 0.831),and ASAP(0.866 and 0.813)models.Furthermore,calibration and DCA indicated that the RF model exhibited robust calibration and clinical validity.CONCLUSION The RF model demonstrated excellent prediction capabilities for HCC and can facilitate early diagnosis of HCC in clinical practice.
文摘BACKGROUND Surgical resection remains the primary treatment for hepatic malignancies,and intraoperative bleeding is associated with a significantly increased risk of death.Therefore,accurate prediction of intraoperative bleeding risk in patients with hepatic malignancies is essential to preventing bleeding in advance and providing safer and more effective treatment.AIM To develop a predictive model for intraoperative bleeding in primary hepatic malignancy patients for improving surgical planning and outcomes.METHODS The retrospective analysis enrolled patients diagnosed with primary hepatic malignancies who underwent surgery at the Hepatobiliary Surgery Department of the Fourth Hospital of Hebei Medical University between 2010 and 2020.Logistic regression analysis was performed to identify potential risk factors for intraoperative bleeding.A prediction model was developed using Python programming language,and its accuracy was evaluated using receiver operating characteristic(ROC)curve analysis.RESULTS Among 406 primary liver cancer patients,16.0%(65/406)suffered massive intraoperative bleeding.Logistic regression analysis identified four variables as associated with intraoperative bleeding in these patients:ascites[odds ratio(OR):22.839;P<0.05],history of alcohol consumption(OR:2.950;P<0.015),TNM staging(OR:2.441;P<0.001),and albumin-bilirubin score(OR:2.361;P<0.001).These variables were used to construct the prediction model.The 406 patients were randomly assigned to a training set(70%)and a prediction set(30%).The area under the ROC curve values for the model’s ability to predict intraoperative bleeding were 0.844 in the training set and 0.80 in the prediction set.CONCLUSION The developed and validated model predicts significant intraoperative blood loss in primary hepatic malignancies using four preoperative clinical factors by considering four preoperative clinical factors:ascites,history of alcohol consumption,TNM staging,and albumin-bilirubin score.Consequently,this model holds promise for enhancing individualised surgical planning.
基金Ministry of Education,Youth and Sports of the Chezk Republic,Grant/Award Numbers:SP2023/039,SP2023/042the European Union under the REFRESH,Grant/Award Number:CZ.10.03.01/00/22_003/0000048。
文摘Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods still need to solve this problem despite the numerous available approaches. Precise analysis of Magnetic Resonance Imaging (MRI) is crucial for detecting, segmenting, and classifying brain tumours in medical diagnostics. Magnetic Resonance Imaging is a vital component in medical diagnosis, and it requires precise, efficient, careful, efficient, and reliable image analysis techniques. The authors developed a Deep Learning (DL) fusion model to classify brain tumours reliably. Deep Learning models require large amounts of training data to achieve good results, so the researchers utilised data augmentation techniques to increase the dataset size for training models. VGG16, ResNet50, and convolutional deep belief networks networks extracted deep features from MRI images. Softmax was used as the classifier, and the training set was supplemented with intentionally created MRI images of brain tumours in addition to the genuine ones. The features of two DL models were combined in the proposed model to generate a fusion model, which significantly increased classification accuracy. An openly accessible dataset from the internet was used to test the model's performance, and the experimental results showed that the proposed fusion model achieved a classification accuracy of 98.98%. Finally, the results were compared with existing methods, and the proposed model outperformed them significantly.
文摘In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.
文摘BACKGROUND Liver transplant(LT)patients have become older and sicker.The rate of post-LT major adverse cardiovascular events(MACE)has increased,and this in turn raises 30-d post-LT mortality.Noninvasive cardiac stress testing loses accuracy when applied to pre-LT cirrhotic patients.AIM To assess the feasibility and accuracy of a machine learning model used to predict post-LT MACE in a regional cohort.METHODS This retrospective cohort study involved 575 LT patients from a Southern Brazilian academic center.We developed a predictive model for post-LT MACE(defined as a composite outcome of stroke,new-onset heart failure,severe arrhythmia,and myocardial infarction)using the extreme gradient boosting(XGBoost)machine learning model.We addressed missing data(below 20%)for relevant variables using the k-nearest neighbor imputation method,calculating the mean from the ten nearest neighbors for each case.The modeling dataset included 83 features,encompassing patient and laboratory data,cirrhosis complications,and pre-LT cardiac assessments.Model performance was assessed using the area under the receiver operating characteristic curve(AUROC).We also employed Shapley additive explanations(SHAP)to interpret feature impacts.The dataset was split into training(75%)and testing(25%)sets.Calibration was evaluated using the Brier score.We followed Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis guidelines for reporting.Scikit-learn and SHAP in Python 3 were used for all analyses.The supplementary material includes code for model development and a user-friendly online MACE prediction calculator.RESULTS Of the 537 included patients,23(4.46%)developed in-hospital MACE,with a mean age at transplantation of 52.9 years.The majority,66.1%,were male.The XGBoost model achieved an impressive AUROC of 0.89 during the training stage.This model exhibited accuracy,precision,recall,and F1-score values of 0.84,0.85,0.80,and 0.79,respectively.Calibration,as assessed by the Brier score,indicated excellent model calibration with a score of 0.07.Furthermore,SHAP values highlighted the significance of certain variables in predicting postoperative MACE,with negative noninvasive cardiac stress testing,use of nonselective beta-blockers,direct bilirubin levels,blood type O,and dynamic alterations on myocardial perfusion scintigraphy being the most influential factors at the cohort-wide level.These results highlight the predictive capability of our XGBoost model in assessing the risk of post-LT MACE,making it a valuable tool for clinical practice.CONCLUSION Our study successfully assessed the feasibility and accuracy of the XGBoost machine learning model in predicting post-LT MACE,using both cardiovascular and hepatic variables.The model demonstrated impressive performance,aligning with literature findings,and exhibited excellent calibration.Notably,our cautious approach to prevent overfitting and data leakage suggests the stability of results when applied to prospective data,reinforcing the model’s value as a reliable tool for predicting post-LT MACE in clinical practice.