The high throughput prediction of the thermodynamic phase behavior of active pharmaceutical ingredients(APIs)with pharmaceutically relevant excipients remains a major scientific challenge in the screening of pharmaceu...The high throughput prediction of the thermodynamic phase behavior of active pharmaceutical ingredients(APIs)with pharmaceutically relevant excipients remains a major scientific challenge in the screening of pharmaceutical formulations.In this work,a developed machine-learning model efficiently predicts the solubility of APIs in polymers by learning the phase equilibrium principle and using a few molecular descriptors.Under the few-shot learning framework,thermodynamic theory(perturbed-chain statistical associating fluid theory)was used for data augmentation,and computational chemistry was applied for molecular descriptors'screening.The results showed that the developed machine-learning model can predict the API-polymer phase diagram accurately,broaden the solubility data of APIs in polymers,and reproduce the relationship between API solubility and the interaction mechanisms between API and polymer successfully,which provided efficient guidance for the development of pharmaceutical formulations.展开更多
Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their mov...Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements.HIR requires more sophisticated analysis than Human Action Recognition(HAR)since HAR focuses solely on individual activities like walking or running,while HIR involves the interactions between people.This research aims to develop a robust system for recognizing five common human interactions,such as hugging,kicking,pushing,pointing,and no interaction,from video sequences using multiple cameras.In this study,a hybrid Deep Learning(DL)and Machine Learning(ML)model was employed to improve classification accuracy and generalizability.The dataset was collected in an indoor environment with four-channel cameras capturing the five types of interactions among 13 participants.The data was processed using a DL model with a fine-tuned ResNet(Residual Networks)architecture based on 2D Convolutional Neural Network(CNN)layers for feature extraction.Subsequently,machine learning models were trained and utilized for interaction classification using six commonly used ML algorithms,including SVM,KNN,RF,DT,NB,and XGBoost.The results demonstrate a high accuracy of 95.45%in classifying human interactions.The hybrid approach enabled effective learning,resulting in highly accurate performance across different interaction types.Future work will explore more complex scenarios involving multiple individuals based on the application of this architecture.展开更多
Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities.Unlike existing approaches that often focus on static gestures and require extensive labeled data,the pro...Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities.Unlike existing approaches that often focus on static gestures and require extensive labeled data,the proposed wearable wristband with selfsupervised contrastive learning excels at dynamic motion tracking and adapts rapidly across multiple scenarios.It features a four-channel sensing array composed of an ionic hydrogel with hierarchical microcone structures and ultrathin flexible electrodes,resulting in high-sensitivity capacitance output.Through wireless transmission from a Wi-Fi module,the proposed algorithm learns latent features from the unlabeled signals of random wrist movements.Remarkably,only few-shot labeled data are sufficient for fine-tuning the model,enabling rapid adaptation to various tasks.The system achieves a high accuracy of 94.9%in different scenarios,including the prediction of eight-direction commands,and air-writing of all numbers and letters.The proposed method facilitates smooth transitions between multiple tasks without the need for modifying the structure or undergoing extensive task-specific training.Its utility has been further extended to enhance human–machine interaction over digital platforms,such as game controls,calculators,and three-language login systems,offering users a natural and intuitive way of communication.展开更多
This paper will focus on the good interaction of teaching and learning in the classroom in five aspects. These elements will effect the interaction of teaching and learning in the classroom.
Electromyography(EMG)has already been broadly used in human-machine interaction(HMI)applications.Determining how to decode the information inside EMG signals robustly and accurately is a key problem for which we urgen...Electromyography(EMG)has already been broadly used in human-machine interaction(HMI)applications.Determining how to decode the information inside EMG signals robustly and accurately is a key problem for which we urgently need a solution.Recently,many EMG pattern recognition tasks have been addressed using deep learning methods.In this paper,we analyze recent papers and present a literature review describing the role that deep learning plays in EMG-based HMI.An overview of typical network structures and processing schemes will be provided.Recent progress in typical tasks such as movement classification,joint angle prediction,and force/torque estimation will be introduced.New issues,including multimodal sensing,inter-subject/inter-session,and robustness toward disturbances will be discussed.We attempt to provide a comprehensive analysis of current research by discussing the advantages,challenges,and opportunities brought by deep learning.We hope that deep learning can aid in eliminating factors that hinder the development of EMG-based HMI systems.Furthermore,possible future directions will be presented to pave the way for future research.展开更多
In this paper,we present a novel data-driven design method for the human-robot interaction(HRI)system,where a given task is achieved by cooperation between the human and the robot.The presented HRI controller design i...In this paper,we present a novel data-driven design method for the human-robot interaction(HRI)system,where a given task is achieved by cooperation between the human and the robot.The presented HRI controller design is a two-level control design approach consisting of a task-oriented performance optimization design and a plant-oriented impedance controller design.The task-oriented design minimizes the human effort and guarantees the perfect task tracking in the outer-loop,while the plant-oriented achieves the desired impedance from the human to the robot manipulator end-effector in the inner-loop.Data-driven reinforcement learning techniques are used for performance optimization in the outer-loop to assign the optimal impedance parameters.In the inner-loop,a velocity-free filter is designed to avoid the requirement of end-effector velocity measurement.On this basis,an adaptive controller is designed to achieve the desired impedance of the robot manipulator in the task space.The simulation and experiment of a robot manipulator are conducted to verify the efficacy of the presented HRI design framework.展开更多
This paper proposes a novel approach for physical human-robot interactions(pHRI), where a robot provides guidance forces to a user based on the user performance. This framework tunes the forces in regards to behavior ...This paper proposes a novel approach for physical human-robot interactions(pHRI), where a robot provides guidance forces to a user based on the user performance. This framework tunes the forces in regards to behavior of each user in coping with different tasks, where lower performance results in higher intervention from the robot. This personalized physical human-robot interaction(p2HRI) method incorporates adaptive modeling of the interaction between the human and the robot as well as learning from demonstration(LfD) techniques to adapt to the users' performance. This approach is based on model predictive control where the system optimizes the rendered forces by predicting the performance of the user. Moreover, continuous learning of the user behavior is added so that the models and personalized considerations are updated based on the change of user performance over time. Applying this framework to a field such as haptic guidance for skill improvement, allows a more personalized learning experience where the interaction between the robot as the intelligent tutor and the student as the user,is better adjusted based on the skill level of the individual and their gradual improvement. The results suggest that the precision of the model of the interaction is improved using this proposed method,and the addition of the considered personalized factors to a more adaptive strategy for rendering of guidance forces.展开更多
Achieving effective interaction can the students get good learning results,and enhance the quality of distance learning.The paper firstly analyzes the research on distance learning support services and the problems of...Achieving effective interaction can the students get good learning results,and enhance the quality of distance learning.The paper firstly analyzes the research on distance learning support services and the problems of distance learning interaction in order to clarify the significance of implementing effective interaction.Then it puts forward the learning support services strategies based on effective interaction,which means to promote distance learning interaction and enhance the students'self-learning ability.展开更多
How to promote interaction in cooperative learning tasks is discussed from a theoretical perspective in order to maximize the benefits of cooperative learning. A classroom instructional model is presented and examined...How to promote interaction in cooperative learning tasks is discussed from a theoretical perspective in order to maximize the benefits of cooperative learning. A classroom instructional model is presented and examined to illustrate how successful and effective interaction is carried out to create the optimal conditions for second language acquisition.展开更多
Nowadays,smart healthcare and biomedical research have marked a substantial growth rate in terms of their presence in the literature,computational approaches,and discoveries,owing to which a massive quantity of experi...Nowadays,smart healthcare and biomedical research have marked a substantial growth rate in terms of their presence in the literature,computational approaches,and discoveries,owing to which a massive quantity of experimental datasets was published and generated(Big Data)for describing and validating such novelties.Drug-drug interaction(DDI)significantly contributed to drug administration and development.It continues as the main obstacle in offering inexpensive and safe healthcare.It normally happens for patients with extensive medication,leading them to take many drugs simultaneously.DDI may cause side effects,either mild or severe health problems.This reduced victims’quality of life and increased hospital healthcare expenses by increasing their recovery time.Several efforts were made to formulate new methods for DDI prediction to overcome this issue.In this aspect,this study designs a new Spotted Hyena Optimizer Driven Deep Learning based Drug-Drug Interaction Prediction(SHODL-DDIP)model in a big data environment.In the presented SHODL-DDIP technique,the relativity and characteristics of the drugs can be identified from different sources for prediction.The input data is preprocessed at the primary level to improve its quality.Next,the salp swarm optimization algorithm(SSO)is used to select features.In this study,the deep belief network(DBN)model is exploited to predict the DDI accurately.The SHO algorithm is involved in improvising the DBN model’s predictive outcomes,showing the novelty of the work.The experimental result analysis of the SHODL-DDIP technique is tested using drug databases,and the results signified the improvements of the SHODLDDIP technique over other recent models in terms of different performance measures.展开更多
N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning m...N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning methods (PCA, HCA, KNN, SIMCA, and SDA). The optimization of molecular structures was performed using the B3LYP/6-31G* approach. MEP maps and ligand-receptor interactions were used to investigate key structural features required for biological activities and likely interactions between N-11-azaartemisinins and heme, respectively. The supervised machine learning methods allowed the separation of the investigated compounds into two classes: cha and cla, with the properties ε<sub>LUMO+1</sub> (one level above lowest unoccupied molecular orbital energy), d(C<sub>6</sub>-C<sub>5</sub>) (distance between C<sub>6</sub> and C<sub>5</sub> atoms in ligands), and TSA (total surface area) responsible for the classification. The insights extracted from the investigation developed and the chemical intuition enabled the design of sixteen new N-11-azaartemisinins (prediction set), moreover, models built with supervised machine learning methods were applied to this prediction set. The result of this application showed twelve new promising N-11-azaartemisinins for synthesis and biological evaluation.展开更多
Using the Internet to learn a language creates wide opportunities to enhance learning (Association of teachers of English in Catalonia (APAC), 2010). The Internet activities promote learners' self-monitoring abil...Using the Internet to learn a language creates wide opportunities to enhance learning (Association of teachers of English in Catalonia (APAC), 2010). The Internet activities promote learners' self-monitoring ability, encourage the use of multimedia and network technology, and develop students' cooperation and participation. During the latest years, there have been many changes in education as these new technologies, including VLEs (Virtual Learning Environments), which have become an important part in the teaching/learning process. According to Tech Terms Computer Dictionary (2012), VLE is a virtual classroom where teachers and students communicate. VLEs have evolved as at an early stage, they were only ways of transmitting information: Teachers uploaded the multimedia resources and students read this information. At a higher stage, VLEs have become interactive. This means that students become active. We have designed a virtual environment where students, weekly, must contribute their opinions and comments in response to a required activity uploaded by the teacher. In this paper, we describe this weekly task and analyze students' opinion about this planned activity. The students become an active subject in this field. In this paper, we show how VLEs are no longer a means of transmitting information but a means of interaction as well as a way of motivating our students to be involved in their learning process展开更多
In the process of the research of second language teaching and learning,people gradually find the influence of context as well as interaction,holding an idea that the language output and comprehension cannot be achiev...In the process of the research of second language teaching and learning,people gradually find the influence of context as well as interaction,holding an idea that the language output and comprehension cannot be achieved without taking the context into consideration.In the second language teaching and learning classroom,the interaction among the learners and between learner and teacher pushes the development of second language learning to some degree.Combined with the concrete situation of second language teaching and learning in China,the essay points out some difficulties as well as put forwards some relevant suggestions after the literature reviews for the relevant researches in and out of China.展开更多
The paper firstly analyzes the problems of distance learning interaction in order to clarify the significance of implementing effective interaction.Then it puts forward the learning support services strategies based o...The paper firstly analyzes the problems of distance learning interaction in order to clarify the significance of implementing effective interaction.Then it puts forward the learning support services strategies based on effective interaction,which means to design strategies from the perspective of effective interaction to improve the effect of distance learning.展开更多
Super Star Learning Platform is a learning platform which meets the needs of interactive teaching mode both in and out of the classroom.This paper analyzes the advantages of interactive teaching strategies and the exi...Super Star Learning Platform is a learning platform which meets the needs of interactive teaching mode both in and out of the classroom.This paper analyzes the advantages of interactive teaching strategies and the existing problems to be solved.Super Star Learning Platform can effectively improve teaching efficiency by enhancing the interaction between teachers and students and motivating students’interest in learning.展开更多
Based on prior studies and a questionnaire survey,this paper is seeking to demonstrate that interactive activities will facilitate EFL learners' social strategy awareness and use,and thus enhance their linguistic ...Based on prior studies and a questionnaire survey,this paper is seeking to demonstrate that interactive activities will facilitate EFL learners' social strategy awareness and use,and thus enhance their linguistic development.A sample lesson plan is also presented in this paper to illustrate that social strategy awareness and use can be improved through interactive learning activities.展开更多
As human‐machine interaction(HMI)in healthcare continues to evolve,the issue of trust in HMI in healthcare has been raised and explored.It is critical for the development and safety of healthcare that humans have pro...As human‐machine interaction(HMI)in healthcare continues to evolve,the issue of trust in HMI in healthcare has been raised and explored.It is critical for the development and safety of healthcare that humans have proper trust in medical machines.Intelligent machines that have applied machine learning(ML)technologies continue to penetrate deeper into the medical environment,which also places higher demands on intelligent healthcare.In order to make machines play a role in HMI in healthcare more effectively and make human‐machine cooperation more harmonious,the authors need to build good humanmachine trust(HMT)in healthcare.This article provides a systematic overview of the prominent research on ML and HMT in healthcare.In addition,this study explores and analyses ML and three important factors that influence HMT in healthcare,and then proposes a HMT model in healthcare.Finally,general trends are summarised and issues to consider addressing in future research on HMT in healthcare are identified.展开更多
Background Virtual reality technology has been widely used in surgical simulators,providing new opportunities for assessing and training surgical skills.Machine learning algorithms are commonly used to analyze and eva...Background Virtual reality technology has been widely used in surgical simulators,providing new opportunities for assessing and training surgical skills.Machine learning algorithms are commonly used to analyze and evaluate the performance of participants.However,their interpretability limits the personalization of the training for individual participants.Methods Seventy-nine participants were recruited and divided into three groups based on their skill level in intracranial tumor resection.Data on the use of surgical tools were collected using a surgical simulator.Feature selection was performed using the Minimum Redundancy Maximum Relevance and SVM-RFE algorithms to obtain the final metrics for training the machine learning model.Five machine learning algorithms were trained to predict the skill level,and the support vector machine performed the best,with an accuracy of 92.41%and Area Under Curve value of 0.98253.The machine learning model was interpreted using Shapley values to identify the important factors contributing to the skill level of each participant.Results This study demonstrates the effectiveness of machine learning in differentiating the evaluation and training of virtual reality neurosurgical performances.The use of Shapley values enables targeted training by identifying deficiencies in individual skills.Conclusions This study provides insights into the use of machine learning for personalized training in virtual reality neurosurgery.The interpretability of the machine learning models enables the development of individualized training programs.In addition,this study highlighted the potential of explanatory models in training external skills.展开更多
For years,foot ulcers linked with diabetes mellitus and neuropathy have significantly impacted diabetic patients’ health-related quality of life(HRQoL). Diabetes foot ulcers impact15% of all diabetic patients at some...For years,foot ulcers linked with diabetes mellitus and neuropathy have significantly impacted diabetic patients’ health-related quality of life(HRQoL). Diabetes foot ulcers impact15% of all diabetic patients at some point in their lives. The facilities and resources used for DFU detection and treatment are only available at hospitals and clinics,which results in the unavailability of feasible and timely detection at an early stage. This necessitates the development of an at-home DFU detection system that enables timely predictions and seamless communication with users,thereby preventing amputations due to neglect and severity. This paper proposes a feasible system consisting of three major modules:an IoT device that works to sense foot nodes to send vibrations onto a foot sole,a machine learning model based on supervised learning which predicts the level of severity of the DFU using four different classification techniques including XGBoost,K-SVM,Random Forest,and Decision tree,and a mobile application that acts as an interface between the sensors and the patient. Based on the severity levels,necessary steps for prevention,treatment,and medications are recommended via the application.展开更多
To address the problems of insufficient number of personalized exercises and cases and teachers’lack of grasp of students’weak knowledge points in the current software testing online courses,we study the strategy of...To address the problems of insufficient number of personalized exercises and cases and teachers’lack of grasp of students’weak knowledge points in the current software testing online courses,we study the strategy of establishing and updating intelligent exercise sets and case libraries and analyze the answers and dig out the weak points of knowledge through group intelligence reasoning and interactive machine learning methods.This will help teachers to make uniform and targeted explanations,reduce manual judgment,and achieve intelligent teaching quality reform,and implement the educational concepts of“keeping up with the times”and“teaching according to students’abilities”.展开更多
基金the financial support from the National Natural Science Foundation of China(22278070,21978047,21776046)。
文摘The high throughput prediction of the thermodynamic phase behavior of active pharmaceutical ingredients(APIs)with pharmaceutically relevant excipients remains a major scientific challenge in the screening of pharmaceutical formulations.In this work,a developed machine-learning model efficiently predicts the solubility of APIs in polymers by learning the phase equilibrium principle and using a few molecular descriptors.Under the few-shot learning framework,thermodynamic theory(perturbed-chain statistical associating fluid theory)was used for data augmentation,and computational chemistry was applied for molecular descriptors'screening.The results showed that the developed machine-learning model can predict the API-polymer phase diagram accurately,broaden the solubility data of APIs in polymers,and reproduce the relationship between API solubility and the interaction mechanisms between API and polymer successfully,which provided efficient guidance for the development of pharmaceutical formulations.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS-2023-00218176)and the Soonchunhyang University Research Fund.
文摘Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements.HIR requires more sophisticated analysis than Human Action Recognition(HAR)since HAR focuses solely on individual activities like walking or running,while HIR involves the interactions between people.This research aims to develop a robust system for recognizing five common human interactions,such as hugging,kicking,pushing,pointing,and no interaction,from video sequences using multiple cameras.In this study,a hybrid Deep Learning(DL)and Machine Learning(ML)model was employed to improve classification accuracy and generalizability.The dataset was collected in an indoor environment with four-channel cameras capturing the five types of interactions among 13 participants.The data was processed using a DL model with a fine-tuned ResNet(Residual Networks)architecture based on 2D Convolutional Neural Network(CNN)layers for feature extraction.Subsequently,machine learning models were trained and utilized for interaction classification using six commonly used ML algorithms,including SVM,KNN,RF,DT,NB,and XGBoost.The results demonstrate a high accuracy of 95.45%in classifying human interactions.The hybrid approach enabled effective learning,resulting in highly accurate performance across different interaction types.Future work will explore more complex scenarios involving multiple individuals based on the application of this architecture.
基金supported by the Research Grant Fund from Kwangwoon University in 2023,the National Natural Science Foundation of China under Grant(62311540155)the Taishan Scholars Project Special Funds(tsqn202312035)the open research foundation of State Key Laboratory of Integrated Chips and Systems.
文摘Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities.Unlike existing approaches that often focus on static gestures and require extensive labeled data,the proposed wearable wristband with selfsupervised contrastive learning excels at dynamic motion tracking and adapts rapidly across multiple scenarios.It features a four-channel sensing array composed of an ionic hydrogel with hierarchical microcone structures and ultrathin flexible electrodes,resulting in high-sensitivity capacitance output.Through wireless transmission from a Wi-Fi module,the proposed algorithm learns latent features from the unlabeled signals of random wrist movements.Remarkably,only few-shot labeled data are sufficient for fine-tuning the model,enabling rapid adaptation to various tasks.The system achieves a high accuracy of 94.9%in different scenarios,including the prediction of eight-direction commands,and air-writing of all numbers and letters.The proposed method facilitates smooth transitions between multiple tasks without the need for modifying the structure or undergoing extensive task-specific training.Its utility has been further extended to enhance human–machine interaction over digital platforms,such as game controls,calculators,and three-language login systems,offering users a natural and intuitive way of communication.
文摘This paper will focus on the good interaction of teaching and learning in the classroom in five aspects. These elements will effect the interaction of teaching and learning in the classroom.
基金supported in part by the National Natural Science Foundation of China(U181321461773369+2 种基金61903360)the Selfplanned Project of the State Key Laboratory of Robotics(2020-Z12)China Postdoctoral Science Foundation funded project(2019M661155)。
文摘Electromyography(EMG)has already been broadly used in human-machine interaction(HMI)applications.Determining how to decode the information inside EMG signals robustly and accurately is a key problem for which we urgently need a solution.Recently,many EMG pattern recognition tasks have been addressed using deep learning methods.In this paper,we analyze recent papers and present a literature review describing the role that deep learning plays in EMG-based HMI.An overview of typical network structures and processing schemes will be provided.Recent progress in typical tasks such as movement classification,joint angle prediction,and force/torque estimation will be introduced.New issues,including multimodal sensing,inter-subject/inter-session,and robustness toward disturbances will be discussed.We attempt to provide a comprehensive analysis of current research by discussing the advantages,challenges,and opportunities brought by deep learning.We hope that deep learning can aid in eliminating factors that hinder the development of EMG-based HMI systems.Furthermore,possible future directions will be presented to pave the way for future research.
基金This work was supported in part by the National Natural Science Foundation of China(61903028)the Youth Innovation Promotion Association,Chinese Academy of Sciences(2020137)+1 种基金the Lifelong Learning Machines Program from DARPA/Microsystems Technology Officethe Army Research Laboratory(W911NF-18-2-0260).
文摘In this paper,we present a novel data-driven design method for the human-robot interaction(HRI)system,where a given task is achieved by cooperation between the human and the robot.The presented HRI controller design is a two-level control design approach consisting of a task-oriented performance optimization design and a plant-oriented impedance controller design.The task-oriented design minimizes the human effort and guarantees the perfect task tracking in the outer-loop,while the plant-oriented achieves the desired impedance from the human to the robot manipulator end-effector in the inner-loop.Data-driven reinforcement learning techniques are used for performance optimization in the outer-loop to assign the optimal impedance parameters.In the inner-loop,a velocity-free filter is designed to avoid the requirement of end-effector velocity measurement.On this basis,an adaptive controller is designed to achieve the desired impedance of the robot manipulator in the task space.The simulation and experiment of a robot manipulator are conducted to verify the efficacy of the presented HRI design framework.
文摘This paper proposes a novel approach for physical human-robot interactions(pHRI), where a robot provides guidance forces to a user based on the user performance. This framework tunes the forces in regards to behavior of each user in coping with different tasks, where lower performance results in higher intervention from the robot. This personalized physical human-robot interaction(p2HRI) method incorporates adaptive modeling of the interaction between the human and the robot as well as learning from demonstration(LfD) techniques to adapt to the users' performance. This approach is based on model predictive control where the system optimizes the rendered forces by predicting the performance of the user. Moreover, continuous learning of the user behavior is added so that the models and personalized considerations are updated based on the change of user performance over time. Applying this framework to a field such as haptic guidance for skill improvement, allows a more personalized learning experience where the interaction between the robot as the intelligent tutor and the student as the user,is better adjusted based on the skill level of the individual and their gradual improvement. The results suggest that the precision of the model of the interaction is improved using this proposed method,and the addition of the considered personalized factors to a more adaptive strategy for rendering of guidance forces.
文摘Achieving effective interaction can the students get good learning results,and enhance the quality of distance learning.The paper firstly analyzes the research on distance learning support services and the problems of distance learning interaction in order to clarify the significance of implementing effective interaction.Then it puts forward the learning support services strategies based on effective interaction,which means to promote distance learning interaction and enhance the students'self-learning ability.
文摘How to promote interaction in cooperative learning tasks is discussed from a theoretical perspective in order to maximize the benefits of cooperative learning. A classroom instructional model is presented and examined to illustrate how successful and effective interaction is carried out to create the optimal conditions for second language acquisition.
文摘Nowadays,smart healthcare and biomedical research have marked a substantial growth rate in terms of their presence in the literature,computational approaches,and discoveries,owing to which a massive quantity of experimental datasets was published and generated(Big Data)for describing and validating such novelties.Drug-drug interaction(DDI)significantly contributed to drug administration and development.It continues as the main obstacle in offering inexpensive and safe healthcare.It normally happens for patients with extensive medication,leading them to take many drugs simultaneously.DDI may cause side effects,either mild or severe health problems.This reduced victims’quality of life and increased hospital healthcare expenses by increasing their recovery time.Several efforts were made to formulate new methods for DDI prediction to overcome this issue.In this aspect,this study designs a new Spotted Hyena Optimizer Driven Deep Learning based Drug-Drug Interaction Prediction(SHODL-DDIP)model in a big data environment.In the presented SHODL-DDIP technique,the relativity and characteristics of the drugs can be identified from different sources for prediction.The input data is preprocessed at the primary level to improve its quality.Next,the salp swarm optimization algorithm(SSO)is used to select features.In this study,the deep belief network(DBN)model is exploited to predict the DDI accurately.The SHO algorithm is involved in improvising the DBN model’s predictive outcomes,showing the novelty of the work.The experimental result analysis of the SHODL-DDIP technique is tested using drug databases,and the results signified the improvements of the SHODLDDIP technique over other recent models in terms of different performance measures.
文摘N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning methods (PCA, HCA, KNN, SIMCA, and SDA). The optimization of molecular structures was performed using the B3LYP/6-31G* approach. MEP maps and ligand-receptor interactions were used to investigate key structural features required for biological activities and likely interactions between N-11-azaartemisinins and heme, respectively. The supervised machine learning methods allowed the separation of the investigated compounds into two classes: cha and cla, with the properties ε<sub>LUMO+1</sub> (one level above lowest unoccupied molecular orbital energy), d(C<sub>6</sub>-C<sub>5</sub>) (distance between C<sub>6</sub> and C<sub>5</sub> atoms in ligands), and TSA (total surface area) responsible for the classification. The insights extracted from the investigation developed and the chemical intuition enabled the design of sixteen new N-11-azaartemisinins (prediction set), moreover, models built with supervised machine learning methods were applied to this prediction set. The result of this application showed twelve new promising N-11-azaartemisinins for synthesis and biological evaluation.
文摘Using the Internet to learn a language creates wide opportunities to enhance learning (Association of teachers of English in Catalonia (APAC), 2010). The Internet activities promote learners' self-monitoring ability, encourage the use of multimedia and network technology, and develop students' cooperation and participation. During the latest years, there have been many changes in education as these new technologies, including VLEs (Virtual Learning Environments), which have become an important part in the teaching/learning process. According to Tech Terms Computer Dictionary (2012), VLE is a virtual classroom where teachers and students communicate. VLEs have evolved as at an early stage, they were only ways of transmitting information: Teachers uploaded the multimedia resources and students read this information. At a higher stage, VLEs have become interactive. This means that students become active. We have designed a virtual environment where students, weekly, must contribute their opinions and comments in response to a required activity uploaded by the teacher. In this paper, we describe this weekly task and analyze students' opinion about this planned activity. The students become an active subject in this field. In this paper, we show how VLEs are no longer a means of transmitting information but a means of interaction as well as a way of motivating our students to be involved in their learning process
文摘In the process of the research of second language teaching and learning,people gradually find the influence of context as well as interaction,holding an idea that the language output and comprehension cannot be achieved without taking the context into consideration.In the second language teaching and learning classroom,the interaction among the learners and between learner and teacher pushes the development of second language learning to some degree.Combined with the concrete situation of second language teaching and learning in China,the essay points out some difficulties as well as put forwards some relevant suggestions after the literature reviews for the relevant researches in and out of China.
文摘The paper firstly analyzes the problems of distance learning interaction in order to clarify the significance of implementing effective interaction.Then it puts forward the learning support services strategies based on effective interaction,which means to design strategies from the perspective of effective interaction to improve the effect of distance learning.
文摘Super Star Learning Platform is a learning platform which meets the needs of interactive teaching mode both in and out of the classroom.This paper analyzes the advantages of interactive teaching strategies and the existing problems to be solved.Super Star Learning Platform can effectively improve teaching efficiency by enhancing the interaction between teachers and students and motivating students’interest in learning.
文摘Based on prior studies and a questionnaire survey,this paper is seeking to demonstrate that interactive activities will facilitate EFL learners' social strategy awareness and use,and thus enhance their linguistic development.A sample lesson plan is also presented in this paper to illustrate that social strategy awareness and use can be improved through interactive learning activities.
基金Qinglan Project of Jiangsu Province of China,Grant/Award Number:BK20180820National Natural Science Foundation of China,Grant/Award Numbers:12271255,61701243,71771125,72271126,12227808+2 种基金Major Projects of Natural Sciences of University in Jiangsu Province of China,Grant/Award Numbers:21KJA630001,22KJA630001Postgraduate Research and Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX23_2343supported by the National Natural Science Foundation of China(no.72271126,12271255,61701243,71771125,12227808)。
文摘As human‐machine interaction(HMI)in healthcare continues to evolve,the issue of trust in HMI in healthcare has been raised and explored.It is critical for the development and safety of healthcare that humans have proper trust in medical machines.Intelligent machines that have applied machine learning(ML)technologies continue to penetrate deeper into the medical environment,which also places higher demands on intelligent healthcare.In order to make machines play a role in HMI in healthcare more effectively and make human‐machine cooperation more harmonious,the authors need to build good humanmachine trust(HMT)in healthcare.This article provides a systematic overview of the prominent research on ML and HMT in healthcare.In addition,this study explores and analyses ML and three important factors that influence HMT in healthcare,and then proposes a HMT model in healthcare.Finally,general trends are summarised and issues to consider addressing in future research on HMT in healthcare are identified.
基金Supported by the Yunnan Key Laboratory of Opto-Electronic Information Technology,Postgraduate Research Innovation Fund of Yunnan Normal University (YJSJJ22-B79)the National Natural Science Foundation of China (62062069,62062070,62005235)。
文摘Background Virtual reality technology has been widely used in surgical simulators,providing new opportunities for assessing and training surgical skills.Machine learning algorithms are commonly used to analyze and evaluate the performance of participants.However,their interpretability limits the personalization of the training for individual participants.Methods Seventy-nine participants were recruited and divided into three groups based on their skill level in intracranial tumor resection.Data on the use of surgical tools were collected using a surgical simulator.Feature selection was performed using the Minimum Redundancy Maximum Relevance and SVM-RFE algorithms to obtain the final metrics for training the machine learning model.Five machine learning algorithms were trained to predict the skill level,and the support vector machine performed the best,with an accuracy of 92.41%and Area Under Curve value of 0.98253.The machine learning model was interpreted using Shapley values to identify the important factors contributing to the skill level of each participant.Results This study demonstrates the effectiveness of machine learning in differentiating the evaluation and training of virtual reality neurosurgical performances.The use of Shapley values enables targeted training by identifying deficiencies in individual skills.Conclusions This study provides insights into the use of machine learning for personalized training in virtual reality neurosurgery.The interpretability of the machine learning models enables the development of individualized training programs.In addition,this study highlighted the potential of explanatory models in training external skills.
文摘For years,foot ulcers linked with diabetes mellitus and neuropathy have significantly impacted diabetic patients’ health-related quality of life(HRQoL). Diabetes foot ulcers impact15% of all diabetic patients at some point in their lives. The facilities and resources used for DFU detection and treatment are only available at hospitals and clinics,which results in the unavailability of feasible and timely detection at an early stage. This necessitates the development of an at-home DFU detection system that enables timely predictions and seamless communication with users,thereby preventing amputations due to neglect and severity. This paper proposes a feasible system consisting of three major modules:an IoT device that works to sense foot nodes to send vibrations onto a foot sole,a machine learning model based on supervised learning which predicts the level of severity of the DFU using four different classification techniques including XGBoost,K-SVM,Random Forest,and Decision tree,and a mobile application that acts as an interface between the sensors and the patient. Based on the severity levels,necessary steps for prevention,treatment,and medications are recommended via the application.
文摘To address the problems of insufficient number of personalized exercises and cases and teachers’lack of grasp of students’weak knowledge points in the current software testing online courses,we study the strategy of establishing and updating intelligent exercise sets and case libraries and analyze the answers and dig out the weak points of knowledge through group intelligence reasoning and interactive machine learning methods.This will help teachers to make uniform and targeted explanations,reduce manual judgment,and achieve intelligent teaching quality reform,and implement the educational concepts of“keeping up with the times”and“teaching according to students’abilities”.