Two new convection-dominated are derived under the approximate solutions least-squares mixed finite element procedures are formulated for solving Sobolev equations. Optimal H(div;Ω)×H1(Ω) norms error estima...Two new convection-dominated are derived under the approximate solutions least-squares mixed finite element procedures are formulated for solving Sobolev equations. Optimal H(div;Ω)×H1(Ω) norms error estimates standard mixed finite spaces. Moreover, these two schemes provide the with first-order and second-order accuracy in time increment, respectively.展开更多
A least-squares mixed finite element method was formulated for a class of Stokes equations in two dimensional domains. The steady state and the time-dependent Stokes' equations were considered. For the stationary ...A least-squares mixed finite element method was formulated for a class of Stokes equations in two dimensional domains. The steady state and the time-dependent Stokes' equations were considered. For the stationary equation, optimal H-t and L-2-error estimates are derived under the standard regularity assumption on the finite element partition ( the LBB-condition is not required). Far the evolutionary equation, optimal L-2 estimates are derived under the conventional Raviart-Thomas spaces.展开更多
In this paper,we present the least-squares mixed finite element method and investigate superconvergence phenomena for the second order elliptic boundary-value problems over triangulations.On the basis of the L2-projec...In this paper,we present the least-squares mixed finite element method and investigate superconvergence phenomena for the second order elliptic boundary-value problems over triangulations.On the basis of the L2-projection and some mixed finite element projections,we obtain the superconvergence result of least-squares mixed finite element solutions.This error estimate indicates an accuracy of O(h3/2)if the lowest order Raviart-Thomas elements are employed.展开更多
A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approxi...A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approximate. The a posteriori error estimator which is needed in the adaptive refinement algorithm is proposed. The local evaluation of the least-squares functional serves as a posteriori error estimator. The posteriori errors are effectively estimated. The convergence of the adaptive least-squares mixed finite element method is proved.展开更多
An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any co...An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any combination of discrete velocity and pressure spaces without requiring the Babuska-Brezzi stability condition. Using the general theory of Verfiirth, the posteriori error estimates of the residual type are derived. Finally, numerical tests are presented to illustrate the effectiveness of the method.展开更多
The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not...The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).展开更多
Hydrodynamic mixed convection in a lid-driven hexagonal cavity with corner heater is numerically simulated in this paper by employing finite element method. The working fluid is assigned as air with a Prandtl num-ber ...Hydrodynamic mixed convection in a lid-driven hexagonal cavity with corner heater is numerically simulated in this paper by employing finite element method. The working fluid is assigned as air with a Prandtl num-ber of 0.71 throughout the simulation. The left and right walls of the hex-agonal cavity are kept thermally insulated and the lid moves top to bottom at a constant speed U0. The top left and right walls of the enclosure are maintained at cold temperature Tc. The bottom right wall is considered with a corner heater whereas the bottom remaining part is adiabatic and inside the cavity a square shape heated block Th. The focus of the work is to investigate the effect of Hartmann number, Richardson number, Grashof number and Reynolds number on the fluid flow and heat transfer characteristics inside the enclosure. A set of graphical results is presented in terms of streamlines, isotherms, local Nusselt number, velocity profiles, temperature profiles and average Nusselt numbers. The results reveal that heat transfer rate increases with increasing Richardson number and Hartmann number. It is also observed that, Hartmann number is a good control parameter for heat transfer in fluid flow in hexagonal cavity.展开更多
In this paper, a least-squares mixed finite element method for the solution of the primal saddle-point problem is developed. It is proved that the approximate problem is consistent ellipticity in the conforming finite...In this paper, a least-squares mixed finite element method for the solution of the primal saddle-point problem is developed. It is proved that the approximate problem is consistent ellipticity in the conforming finite element spaces with only the discrete BB-condition needed for a smaller auxiliary problem. The abstract error estimate is derived. [ABSTRACT FROM AUTHOR]展开更多
In this paper the least-squares mixed finite element is considered for solving second-order elliptic problems in two dimensional domains. The primary solution u and the flux σ are approximated using finite element sp...In this paper the least-squares mixed finite element is considered for solving second-order elliptic problems in two dimensional domains. The primary solution u and the flux σ are approximated using finite element spaces consisting of piecewise polynomials of degree k and r respectively. Based on interpolation operators and an auxiliary projection, superconvergent H1-error estimates of both the primary solution approximation uh and the flux approximation σh are obtained under the standard quasi-uniform assumption on finite element partition. The superconvergence indicates an accuracy of O(hr+2) for the least-squares mixed finite element approximation if Raviart-Thomas or Brezzi-Douglas-Fortin-Marini elements of order r are employed with optimal error estimate of O(hr+1).展开更多
In this paper, a constrained distributed optimal control problem governed by a first- order elliptic system is considered. Least-squares mixed finite element methods, which are not subject to the Ladyzhenkaya-Babuska-...In this paper, a constrained distributed optimal control problem governed by a first- order elliptic system is considered. Least-squares mixed finite element methods, which are not subject to the Ladyzhenkaya-Babuska-Brezzi consistency condition, are used for solving the elliptic system with two unknown state variables. By adopting the Lagrange multiplier approach, continuous and discrete optimality systems including a primal state equation, an adjoint state equation, and a variational inequality for the optimal control are derived, respectively. Both the discrete state equation and discrete adjoint state equation yield a symmetric and positive definite linear algebraic system. Thus, the popular solvers such as preconditioned conjugate gradient (PCG) and algebraic multi-grid (AMG) can be used for rapid solution. Optimal a priori error estimates are obtained, respectively, for the control function in L2 (Ω)-norm, for the original state and adjoint state in H1 (Ω)-norm, and for the flux state and adjoint flux state in H(div; Ω)-norm. Finally, we use one numerical example to validate the theoretical findings.展开更多
Focuses on the formulation of a number of least-squares mixed finite element schemes to solve the initial boundary value problem of a nonlinear parabolic partial differential equation. Convergence analysis; Informatio...Focuses on the formulation of a number of least-squares mixed finite element schemes to solve the initial boundary value problem of a nonlinear parabolic partial differential equation. Convergence analysis; Information on the least-squares mixed element schemes for nonlinear parabolic problem.展开更多
A reduced-order extrapolation algorithm based on Crank-Nicolson least-squares mixed finite element (CNLSMFE) formulation and proper orthogonal decomposition (POD) technique for two-dimensional (2D) Sobolev equat...A reduced-order extrapolation algorithm based on Crank-Nicolson least-squares mixed finite element (CNLSMFE) formulation and proper orthogonal decomposition (POD) technique for two-dimensional (2D) Sobolev equations is established. The error estimates of the reduced-order CNLSMFE solutions and the implementation for the reduced-order extrapolation algorithm are provided. A numerical example is used to show that the results of numerical computations are consistent with theoretical conclusions. Moreover, it is shown that the reduced-order extrapolation algorithm is feasible and efficient for seeking numerical solutions to 2D Sobolev equations.展开更多
In this work the authors simulate a contaminant transport problem in three dimensions that takes place in the soil of waste disposals. Such problem is modeled by a diffusion-dominated equation. The solution of this eq...In this work the authors simulate a contaminant transport problem in three dimensions that takes place in the soil of waste disposals. Such problem is modeled by a diffusion-dominated equation. The solution of this equation is addressed by using mixed finite element method for the spatial discretization of the equation. The resulting linear algebraic system is handled by an iterative domain decomposition procedure. This procedure is naturally parallelizable, and permits to implement computational codes in distributed memory machines in order to save on CPU time. Numerical results of the serial and parallel codes were compared with experimental results, and their performance measures were evaluated. The results indicate that the parallelizable procedure is an efficient tool for performing simulations of the problem.展开更多
基金Supported by by the National Science Foundation for Young Scholars of China(11101431)the Fundamental Research Funds for the Central Universities (12CX04082A,10CX04041A)Shandong Province Natural Science Foundation of China(ZR2010AL020)
文摘Two new convection-dominated are derived under the approximate solutions least-squares mixed finite element procedures are formulated for solving Sobolev equations. Optimal H(div;Ω)×H1(Ω) norms error estimates standard mixed finite spaces. Moreover, these two schemes provide the with first-order and second-order accuracy in time increment, respectively.
文摘A least-squares mixed finite element method was formulated for a class of Stokes equations in two dimensional domains. The steady state and the time-dependent Stokes' equations were considered. For the stationary equation, optimal H-t and L-2-error estimates are derived under the standard regularity assumption on the finite element partition ( the LBB-condition is not required). Far the evolutionary equation, optimal L-2 estimates are derived under the conventional Raviart-Thomas spaces.
基金Supported by National Science Foundation of Chinathe Backbone Teachers Foundation of China+1 种基金the Backbone Teachers Foundation of China State Education Commissionthe Special Funds for Major State Basic Research Project
文摘In this paper,we present the least-squares mixed finite element method and investigate superconvergence phenomena for the second order elliptic boundary-value problems over triangulations.On the basis of the L2-projection and some mixed finite element projections,we obtain the superconvergence result of least-squares mixed finite element solutions.This error estimate indicates an accuracy of O(h3/2)if the lowest order Raviart-Thomas elements are employed.
文摘A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approximate. The a posteriori error estimator which is needed in the adaptive refinement algorithm is proposed. The local evaluation of the least-squares functional serves as a posteriori error estimator. The posteriori errors are effectively estimated. The convergence of the adaptive least-squares mixed finite element method is proved.
基金supported by the National Natural Science Foundation of China(Nos.10871156 and 11171269)the Fund of Xi'an Jiaotong University(No.2009xjtujc30)
文摘An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any combination of discrete velocity and pressure spaces without requiring the Babuska-Brezzi stability condition. Using the general theory of Verfiirth, the posteriori error estimates of the residual type are derived. Finally, numerical tests are presented to illustrate the effectiveness of the method.
基金supported by the National Basic Research Program of China (2005CB321701)NSF of mathematics research special fund of Hebei Province(08M005)
文摘The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).
文摘Hydrodynamic mixed convection in a lid-driven hexagonal cavity with corner heater is numerically simulated in this paper by employing finite element method. The working fluid is assigned as air with a Prandtl num-ber of 0.71 throughout the simulation. The left and right walls of the hex-agonal cavity are kept thermally insulated and the lid moves top to bottom at a constant speed U0. The top left and right walls of the enclosure are maintained at cold temperature Tc. The bottom right wall is considered with a corner heater whereas the bottom remaining part is adiabatic and inside the cavity a square shape heated block Th. The focus of the work is to investigate the effect of Hartmann number, Richardson number, Grashof number and Reynolds number on the fluid flow and heat transfer characteristics inside the enclosure. A set of graphical results is presented in terms of streamlines, isotherms, local Nusselt number, velocity profiles, temperature profiles and average Nusselt numbers. The results reveal that heat transfer rate increases with increasing Richardson number and Hartmann number. It is also observed that, Hartmann number is a good control parameter for heat transfer in fluid flow in hexagonal cavity.
文摘In this paper, a least-squares mixed finite element method for the solution of the primal saddle-point problem is developed. It is proved that the approximate problem is consistent ellipticity in the conforming finite element spaces with only the discrete BB-condition needed for a smaller auxiliary problem. The abstract error estimate is derived. [ABSTRACT FROM AUTHOR]
基金Supported by National Science Foundation of China and the Foundation of China State Education Commission and the Special Funds for Major State Basic Research Projects.
文摘In this paper the least-squares mixed finite element is considered for solving second-order elliptic problems in two dimensional domains. The primary solution u and the flux σ are approximated using finite element spaces consisting of piecewise polynomials of degree k and r respectively. Based on interpolation operators and an auxiliary projection, superconvergent H1-error estimates of both the primary solution approximation uh and the flux approximation σh are obtained under the standard quasi-uniform assumption on finite element partition. The superconvergence indicates an accuracy of O(hr+2) for the least-squares mixed finite element approximation if Raviart-Thomas or Brezzi-Douglas-Fortin-Marini elements of order r are employed with optimal error estimate of O(hr+1).
基金Acknowledgements. The authors would like to thank the editor and the anonymous referee for their valuable comments and suggestions on an earlier version of this paper. The work of Hongxing Rui (corresponding author) was supported by the NationM Natural Science Founda- tion of China (No. 11171190). The work of Hongfei Fu was supported by the National Natural Science Foundation of China (No. 11201485), the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (No. BS2013NJ001), and the Fundamental Research Funds for the Central Universities (No. 14CX02217A).
文摘In this paper, a constrained distributed optimal control problem governed by a first- order elliptic system is considered. Least-squares mixed finite element methods, which are not subject to the Ladyzhenkaya-Babuska-Brezzi consistency condition, are used for solving the elliptic system with two unknown state variables. By adopting the Lagrange multiplier approach, continuous and discrete optimality systems including a primal state equation, an adjoint state equation, and a variational inequality for the optimal control are derived, respectively. Both the discrete state equation and discrete adjoint state equation yield a symmetric and positive definite linear algebraic system. Thus, the popular solvers such as preconditioned conjugate gradient (PCG) and algebraic multi-grid (AMG) can be used for rapid solution. Optimal a priori error estimates are obtained, respectively, for the control function in L2 (Ω)-norm, for the original state and adjoint state in H1 (Ω)-norm, and for the flux state and adjoint flux state in H(div; Ω)-norm. Finally, we use one numerical example to validate the theoretical findings.
基金Major State Basic Research Program of People's Republic of China(G1999032803).
文摘Focuses on the formulation of a number of least-squares mixed finite element schemes to solve the initial boundary value problem of a nonlinear parabolic partial differential equation. Convergence analysis; Information on the least-squares mixed element schemes for nonlinear parabolic problem.
基金Supported by the National Natural Science Foundation of China(11271127)Science Research Projectof Guizhou Province Education Department(QJHKYZ[2013]207)
文摘A reduced-order extrapolation algorithm based on Crank-Nicolson least-squares mixed finite element (CNLSMFE) formulation and proper orthogonal decomposition (POD) technique for two-dimensional (2D) Sobolev equations is established. The error estimates of the reduced-order CNLSMFE solutions and the implementation for the reduced-order extrapolation algorithm are provided. A numerical example is used to show that the results of numerical computations are consistent with theoretical conclusions. Moreover, it is shown that the reduced-order extrapolation algorithm is feasible and efficient for seeking numerical solutions to 2D Sobolev equations.
文摘In this work the authors simulate a contaminant transport problem in three dimensions that takes place in the soil of waste disposals. Such problem is modeled by a diffusion-dominated equation. The solution of this equation is addressed by using mixed finite element method for the spatial discretization of the equation. The resulting linear algebraic system is handled by an iterative domain decomposition procedure. This procedure is naturally parallelizable, and permits to implement computational codes in distributed memory machines in order to save on CPU time. Numerical results of the serial and parallel codes were compared with experimental results, and their performance measures were evaluated. The results indicate that the parallelizable procedure is an efficient tool for performing simulations of the problem.