期刊文献+
共找到90篇文章
< 1 2 5 >
每页显示 20 50 100
基于LASSO回归的宁夏回族自治区不同学段儿童青少年近视影响因素分析 被引量:1
1
作者 谢小莲 陈启 +4 位作者 李静 马娟 王飞 赵海萍 曹娟 《眼科新进展》 CAS 北大核心 2024年第7期549-553,共5页
目的分析宁夏回族自治区儿童青少年近视流行现状、影响因素及不同学段间的差异。方法采用分层整群随机抽样的方法,于2019年9月至12月,在宁夏回族自治区银川市、吴忠市、石嘴山市、固原市和中卫市,随机抽取8所小学、6所初中、6所高中、4... 目的分析宁夏回族自治区儿童青少年近视流行现状、影响因素及不同学段间的差异。方法采用分层整群随机抽样的方法,于2019年9月至12月,在宁夏回族自治区银川市、吴忠市、石嘴山市、固原市和中卫市,随机抽取8所小学、6所初中、6所高中、4所大学的学生为研究对象,小学每个年级抽取5个班级,初中至大学每个年级抽取4个班级,以抽取班级的全体学生作为研究对象,共抽取学生14211人,对其进行问卷调查、体格检查和视力测量。不同学段儿童近视的影响因素采用最小绝对收缩和选择算子(LASSO)联合Logistic回归进行分析,选择贝叶斯信息准则(Bayesian information criterion,BIC)最小的模型为最优模型。结果宁夏回族自治区儿童青少年近视检出率为70.3%,女生高于男生,城市高于乡镇,差异均有统计学意义(均为P<0.001);按学段分层后,随着年级的增加,近视检出率随之升高,小学最低,大学最高,不同学段近视检出率差异有统计学意义(P<0.001)。近视影响因素的LASSO-Logistic回归分析表明,城乡、性别、年龄、目前是否配戴眼镜、每日课间操节数、是否积极参加体力活动和过去6个月是否保持规律活动是小学生近视的影响因素(均为P<0.05);性别、目前是否配戴眼镜是初中生和高中生近视的影响因素(均为P<0.05);目前是否配戴眼镜是大学生近视的影响因素(P<0.05)。结论宁夏回族自治区儿童青少年近视检出率高,不同学段儿童青少年近视影响因素差异明显。配戴眼镜是控制近视的保护因素。应根据儿童青少年所处学段开展有针对性的视力相关知识的健康教育,增强其健康保健意识,提高儿童青少年视力。 展开更多
关键词 近视 学段 儿童青少年 lasso回归
下载PDF
高尿酸血症与慢性肺源性心脏病的相关性研究:基于LASSO回归与倾向性评分匹配法
2
作者 祁海燕 王捷 +1 位作者 罗玉玺 武云 《中国全科医学》 CAS 北大核心 2024年第24期2954-2960,2968,共8页
背景近年来众多研究表明高尿酸血症(HUA)是某些疾病的影响因素,然而HUA是否为慢性肺源性心脏病(CPHD)的影响因素仍需进一步研究。目的探讨HUA与CPHD的相关性,旨在为CPHD患者血尿酸(SUA)水平的管理提供理论依据。方法纳入2019—2023年新... 背景近年来众多研究表明高尿酸血症(HUA)是某些疾病的影响因素,然而HUA是否为慢性肺源性心脏病(CPHD)的影响因素仍需进一步研究。目的探讨HUA与CPHD的相关性,旨在为CPHD患者血尿酸(SUA)水平的管理提供理论依据。方法纳入2019—2023年新疆医科大学第一附属医院收治的1171例慢性阻塞性肺疾病(COPD)患者为研究对象,根据其是否患有CPHD分为CPHD组(470例)和COPD组(701例)。收集患者一般资料和实验室检查及超声心动图检查结果。采用LASSO回归法对变量进行筛选,采用倾向性评分匹配法(PSM)排除混杂因素影响。采用多因素Logistic回归分析探究COPD患者合并CPHD的影响因素。结果CPHD组女性、汉族、吸烟、饮酒、特发性肺纤维化、慢性支气管炎、支气管哮喘比例、淋巴细胞百分比、左心室舒张末期内径、左心室收缩末期内径、心输出量、左心室射血分数低于COPD组,心功能3~4级、HUA、肺栓塞、先天性心脏病比例、红细胞计数、中性粒细胞百分比、SUA、血尿素氮、D-二聚体、N末端-B型利钠肽前体、右心房内径、右心室内径、左心房内径、右心室流出道内径、肺动脉内径高于COPD组,差异有统计学意义(P<0.05)。LASSO回归筛选出变量后进行PSM,最终得到COPD组469例、CPHD组469例。匹配后CPHD组心功能3~4级、HUA占比、右心房内径、右心室内径、右心室流出道内径、肺动脉内径大于COPD组,支气管哮喘、淋巴细胞百分比低于COPD组,差异有统计学意义(P<0.05)。多因素Logistic回归分析结果显示,HUA升高、心功能3~4级、右心房内径、右心室内径、肺动脉内径增加是COPD患者合并CPHD的危险因素(P<0.05),患有支气管哮喘、左心室舒张末期内径增加为COPD患者合并CPHD的保护因素(P<0.05)。将SUA水平按四分位数分层,多因素Logistic回归分析结果显示,与Q1(SUA<237.31μmol/L)比较,Q4(SUA>381.29μmol/L)患者患有CPHD的风险增加1.421倍。结论HUA是CPHD疾病发生、发展的影响因素,积极控制SUA水平有助于预防CPHD的发生、发展。 展开更多
关键词 肺心病 高尿酸血症 肺疾病 慢性阻塞性 病例对照研究 最小绝对收缩和选择算法 倾向性评分
下载PDF
基于LASSO回归和Nomogram预测经皮肾活检术后出血风险
3
作者 李铖铖 梅莞翠 +1 位作者 柏刚 张忠磊 《中国医学工程》 2024年第8期8-15,共8页
目的探讨超声引导下经皮肾穿刺活检术后出血的危险因素,并构建列线图预测模型。方法回顾性收集2022年6月1日至2023年6月1日在十堰市太和医院超声医学科进行实时超声引导下经皮肾穿刺活检住院患者的临床及影像资料。采用LASSO回归、Logis... 目的探讨超声引导下经皮肾穿刺活检术后出血的危险因素,并构建列线图预测模型。方法回顾性收集2022年6月1日至2023年6月1日在十堰市太和医院超声医学科进行实时超声引导下经皮肾穿刺活检住院患者的临床及影像资料。采用LASSO回归、Logistic回归分析,构建超声引导下肾穿刺活检术后出血的列线图预测模型,利用受试者工作特征(ROC)曲线、校正曲线(calibration curve)和决策曲线分析(DCA)三个层面对模型进行评估。结果最终纳入206例超声引导下肾穿刺活检的患者。LASSO回归及Logistic回归分析结果显示,高血压病史(OR=5.339,P<0.001)、穿刺肾下极皮质厚度(OR=0.410,P<0.001)、穿刺肾皮髓质分界不清(OR=6.133,P<0.001)和穿刺时患者不能配合(OR=4.525,P=0.004)是超声引导下肾穿刺活检后出血的独立危险因素。列线图预测模型具有良好的诊断效能AUC=0.891,95%CI为0.842~0.941,绘制模型校准曲线,平均绝对误差为0.026,理想曲线和校正曲线贴合较好。Hosmer-Lemeshow检测χ^(2)=6.599,P=0.580(P>0.05),表明该模型的准确度较好。绘制临床决策曲线显示当列线图预测模型的阈概率小于89%时,该模型的临床净收益率最高。结论高血压病史、穿刺肾下极皮质厚度、穿刺肾皮髓质分界不清、穿刺时患者不能配合是超声引导下肾穿刺活检术后出血的危险因素;基于列线图模型预测超声引导下肾穿刺活检术后出血具有可行性,可以为临床评估肾穿刺活检后出血风险提供可视化依据。 展开更多
关键词 肾活检 出血 高危因素 lasso回归 列线图
下载PDF
基于在线LASSO VAR和EGARCH模型的风场功率集成概率预测 被引量:2
4
作者 王鹏 李艳婷 张宇 《上海交通大学学报》 EI CAS CSCD 北大核心 2023年第7期845-858,共14页
由于风速波动性大,风力发电往往呈现一定的不确定性.传统风能预测模型以均值为0、方差固定的正态分布度量不确定性,但方差可能随时间变化,即具有异方差性.为提升预测精度,基于在线最小绝对收缩和选择算子的向量自回归(LASSO VAR)和指数... 由于风速波动性大,风力发电往往呈现一定的不确定性.传统风能预测模型以均值为0、方差固定的正态分布度量不确定性,但方差可能随时间变化,即具有异方差性.为提升预测精度,基于在线最小绝对收缩和选择算子的向量自回归(LASSO VAR)和指数自回归条件异方差(EGARCH)模型,提出一种考虑异方差性的风场级功率集成概率预测模型.首先使用在线LASSO VAR模型预测风力机的有功功率,再利用自回归条件异方差检验验证残差的异方差性,并利用信息冲击曲线和动态显著线评估正负残差对未来条件方差的不对称影响.然后针对异方差性和不对称性,使用EGARCH模型对单风力机有功功率的残差进行预测,得到有功功率的条件方差.最后,考虑各风力机有功功率的相关性,将风场中各风力机的有功功率求和,得到整个风场总有功功率的概率预测结果.将该方法应用于中国华东某地风场,验证了该模型能有效提高预测精度. 展开更多
关键词 在线lasso VAR 异方差 指数条件异方差模型 概率预测
下载PDF
基于Lasso和构造性覆盖算法的不均衡数据分类方法 被引量:2
5
作者 蒋溢 伍书平 +1 位作者 胡昆 龙林波 《计算机应用》 CSCD 北大核心 2023年第4期1086-1093,共8页
针对机器学习分类算法在不均衡数据分类问题中对少数类样本识别能力不足的问题,以电信客户流失场景为例,提出一种不均衡数据分类方法 L-CCSmote(Lasso Constructive Covering Smote)。首先,通过套索回归(Lasso)提取流失用户特征以优化... 针对机器学习分类算法在不均衡数据分类问题中对少数类样本识别能力不足的问题,以电信客户流失场景为例,提出一种不均衡数据分类方法 L-CCSmote(Lasso Constructive Covering Smote)。首先,通过套索回归(Lasso)提取流失用户特征以优化模型输入;然后,通过构造性覆盖算法(CCA)建立神经网络生成符合样本整体分布的覆盖;最后,进一步提出单样本覆盖策略、样本多样性策略和样本密度峰值策略,通过以上策略混合采样以平衡数据。选用了KEEL数据库中的13个不均衡数据集和2个脱敏电信客户数据集,分别在逻辑回归(LR)和支持向量机(SVM)分类算法上对该方法进行验证。在LR分类算法上,与SMOTE-Enn(Synthetic Minority Oversampling TEchnique Edited nearest neighbor)相比,所提方法的平均几何平均值(G-MEAN)提升了2.32%;在SVM分类算法上,与Borderline-SMOTE(Borderline Synthetic Minority Oversampling Technique Edited)相比,所提方法的平均G-MEAN提升了2.44%。实验结果表明,所提方法能解决类别偏斜分布影响分类的问题,且对于稀有类的识别能力优于经典平衡数据方法。 展开更多
关键词 lasso 构造性覆盖算法 不均衡数据分类 客户流失预测 混合采样
下载PDF
WGCNA联合LASSO-COX方法筛选甲状腺癌预后关键基因及其临床价值分析
6
作者 张澍漾 郭松雪 +3 位作者 项承 支飞虎 谢立江 赵萍 《中国现代医生》 2023年第32期1-5,36,共6页
目的筛选甲状腺癌(thyroid cancer,THCA)的关键预后基因并构建预后预测模型。方法从癌症基因组图谱(The Cancer GenomeAtlas,TCGA)数据库中获取THCA和正常样本的基因表达谱,采用Limma算法筛选THCA组织与正常组织间差异表达基因(differen... 目的筛选甲状腺癌(thyroid cancer,THCA)的关键预后基因并构建预后预测模型。方法从癌症基因组图谱(The Cancer GenomeAtlas,TCGA)数据库中获取THCA和正常样本的基因表达谱,采用Limma算法筛选THCA组织与正常组织间差异表达基因(differentially expressed genes,DEGs),再进行权重基因共表达网络分析(weighted gene co-expression network analysis,WGCNA)和套索联合COX回归分析(least absolute shrinkage and selection operator regression COX analysis,LASSO-COX)获得与其预后相关基因,然后根据关键基因构建预后预测模型,基于风险评分进行生存分析和受试者工作特征(receiver operating characteristic,ROC)曲线分析,最后基于基因表达谱和风险评分进行基因集富集分析(gene set enrichment analysis,GSEA)以评估相关途径和分子机制。结果本研究筛选出5个THCA预后关键基因,即LINC02550、STEAP2、ATP2C2、PLEKHG4B和SALL4。通过这5个基因构建的预后评估模型表明,风险评分越高,预后越差。ROC曲线分析结果表明该模型对患者生存率具有优良的预测性能,结合THCA患者的主要临床特性建立的列线图具有良好的预测性能。GSEA分析发现mTOR信号通路、Hedgehog信号通路、细胞自噬调节、转化生长因子-β信号通路富集在高风险评分组。结论基于筛选出的5个关键基因构建的预后预测模型有助于预测THCA患者的预后,这5个基因是潜在的靶向治疗基因。 展开更多
关键词 甲状腺癌 基因集富集分析 权重基因共表达网络分析 套索联合COX回归分析
下载PDF
纤维肌痛综合征生物标记物的筛选及免疫细胞浸润分析
7
作者 刘雅妮 杨静欢 +5 位作者 陆慧慧 易玉芳 李智翔 欧阳福 吴璟莉 魏兵 《中国组织工程研究》 CAS 北大核心 2025年第5期1091-1100,共10页
背景:纤维肌痛综合征作为常见风湿病,其发病与中枢敏化及免疫异常有关,但具体过程尚未阐明,缺乏特异性诊断标志物,不断探索该病的发病机制具有重要的临床意义。目的:基于加权基因共表达网络分析(WGCNA)等生物信息学方法和机器学习算法... 背景:纤维肌痛综合征作为常见风湿病,其发病与中枢敏化及免疫异常有关,但具体过程尚未阐明,缺乏特异性诊断标志物,不断探索该病的发病机制具有重要的临床意义。目的:基于加权基因共表达网络分析(WGCNA)等生物信息学方法和机器学习算法筛选纤维肌痛综合征潜在的诊断相关标志基因,并分析其免疫细胞浸润特征。方法:对来自基因表达综合数据库(GEO)的纤维肌痛综合征数据集转录谱进行差异分析和WGCNA分析,整合筛选出差异共表达基因,进一步采用机器学习套索回归(LASSO)算法、支持向量机递归特征消除(SVM-RFE)机器学习算法来识别核心生物标志物,并绘制受试者工作特征(ROC)曲线以评估诊断价值。最后,采用单样本基因集富集分析(ssGSEA)和基因集富集分析(GSEA)评估纤维肌痛综合征的免疫细胞浸润情况及通路富集。结果与结论:①对GSE67311数据集按照log2|(FC)|>0,P<0.05的条件进行差异分析后获得8个下调的差异表达基因;进行WGCNA分析后获得正相关性最高(r=0.22,P=0.04)的模块(MEdarkviolet)内含基因497个,负相关性最高(r=-0.41,P=6×10-5)的模块(MEsalmon2)内含基因19个;将差异表达基因与WGCNA的2个高相关性模块基因取交集,获得7个基因。②对上述7个基因进行LASSO回归算法筛选出4个基因,进行SVM-RFE机器学习算法筛选出5个基因,两者取交集后确定了3个核心基因,分别为重组1号染色体开放阅读框150蛋白(germinal center associated signaling and motility like,GCSAML)、整合素β8(Integrin beta-8,ITGB8)和羧肽酶A3(carboxypeptidase A3,CPA3);绘制3个核心基因的ROC曲线下面积分别为0.744,0.739,0.734,提示均具有很好的诊断价值,可作为纤维肌痛综合征的生物标志物。③免疫浸润分析结果显示,与对照组相比纤维肌痛综合征患者记忆B细胞、CD56 bright NK细胞和肥大细胞显著下调(P<0.05),且与上述3个生物标志物显著正相关(P<0.05)。④富集分析结果提示,纤维肌痛综合征的富集途径包括9条,主要与嗅觉传导、神经活性配体-受体相互作用及感染等通路密切相关。⑤上述结果显示,纤维肌痛综合征的发生发展与多基因参与、免疫调节异常及多个通路失调有关,但这些基因与免疫细胞之间的相互作用,以及它们与各通路之间的关系尚需进一步研究。 展开更多
关键词 纤维肌痛综合征 生物信息学 机器学习 免疫浸润 加权基因共表达网络分析 套索回归 支持向量机递归特征消除算法 单样本基因集富集分析 基因集富集分析
下载PDF
基于LASSO-SVM的软件缺陷预测模型研究 被引量:16
8
作者 吴晓萍 赵学靖 +2 位作者 乔辉 刘东梅 王志 《计算机应用研究》 CSCD 北大核心 2013年第9期2748-2751,2754,共5页
针对当前大多数软件缺陷预测模型预测准确率较差的问题,提出了结合最小绝对值压缩和选择方法与支持向量机算法的软件缺陷预测模型。首先利用最小绝对值压缩与选择方法的特征选择能力降低了原始数据集的维度,去除了与软件缺陷预测不相关... 针对当前大多数软件缺陷预测模型预测准确率较差的问题,提出了结合最小绝对值压缩和选择方法与支持向量机算法的软件缺陷预测模型。首先利用最小绝对值压缩与选择方法的特征选择能力降低了原始数据集的维度,去除了与软件缺陷预测不相关的数据集;然后利用交叉验证算法的参数寻优能力找到支持向量机的最优相关参数;最后运用支持向量机的非线性运算能力完成了软件缺陷预测。仿真实验结果表明,所提出的缺陷预测模型与传统的缺陷预测模型相比具有较高的预测准确率,且预测速度更快。 展开更多
关键词 软件缺陷预测 最小绝对值压缩与选择方法 特征选择 支持向量机 交叉验证
下载PDF
针对Lasso问题的多维权重求解算法 被引量:8
9
作者 陈善雄 刘小娟 +1 位作者 陈春蓉 郑方园 《计算机应用》 CSCD 北大核心 2017年第6期1674-1679,共6页
最小绝对收缩和选择算子(Lasso)在数据维度约减、异常检测方面有着较强的计算优势。针对Lasso用于异常检测中检测精度不高的问题,提出了一种基于多维度权重的最小角回归(LARS)算法解决Lasso问题。首先考虑每个回归变量在回归模型中所占... 最小绝对收缩和选择算子(Lasso)在数据维度约减、异常检测方面有着较强的计算优势。针对Lasso用于异常检测中检测精度不高的问题,提出了一种基于多维度权重的最小角回归(LARS)算法解决Lasso问题。首先考虑每个回归变量在回归模型中所占权重不同,即此属性变量在整体评价中的相对重要程度不同,故在LARS算法计算角分线时,将各回归变量与剩余变量的联合相关度纳入考虑,用来区分不同属性变量对检测结果的影响;然后在LARS算法中加入主成分分析(PCA)、独立权数法、基于Intercriteria相关性的指标的重要度评价(CRITIC)法这三种权重估计方法,并进一步对LARS求解的前进方向和前进变量选择进行优化。最后使用Pima Indians Diabetes数据集验证算法的优良性。实验结果表明,在更小阈值的约束条件下,加入多维权重后的LARS算法对Lasso问题的解具有更高的准确度,能更好地用于异常检测。 展开更多
关键词 最小绝对收缩和选择算子 变量选择 最小角回归 多元线性回归 加权
下载PDF
多传感器信息融合的轴承故障迁移诊断方法
10
作者 包从望 江伟 +1 位作者 张彩红 周大帅 《机电工程》 CAS 北大核心 2024年第5期878-885,共8页
在重型装备低速、重载、强噪声环境下,采用单一传感器难以全面获取轴承的故障诊断信息,导致故障识别率低、识别不稳定,致使变工况下轴承故障迁移诊断失效。针对以上问题,提出了一种多传感器信息融合的轴承故障迁移诊断方法。首先,结合... 在重型装备低速、重载、强噪声环境下,采用单一传感器难以全面获取轴承的故障诊断信息,导致故障识别率低、识别不稳定,致使变工况下轴承故障迁移诊断失效。针对以上问题,提出了一种多传感器信息融合的轴承故障迁移诊断方法。首先,结合传感器的通道数,构建了堆叠卷积神经网络(MCNNs)提取各个通道的故障特征;然后,在MCNNs中引入最小绝对收缩与选择算子(Lasso),并通过网络反向传播完成了特征权值的更新,从而获得了多通道特征的融合;最后,利用源域数据对模型进行了训练,提取了故障特征,并完成了特征融合,采用损失函数完成了模型参数的优化,将源域训练得到的模型结果作为目标域的初始模型,利用目标域样本对初始模型的参数进行了微调,从而完成了模型迁移;并进行了信息融合效果、方法对比以及传感器信息采集属性的性能实验。研究结果表明:传感器的安装位置对信息融合影响较大,MCNNs+Lasso方法具有较好的特征融合效果,平均迁移诊断精度为99.03%,部分精度可达99.97%,在多个变工况的迁移任务中表现出较高迁移精度和良好的泛化性能。 展开更多
关键词 滚动轴承 故障诊断 多传感器信息融合 堆叠卷积神经网络 最小绝对收缩与选择算子 迁移学习
下载PDF
基于X线的纹理分析在诊断跟距联合畸形中的临床应用价值
11
作者 郝海凤 张卜天 +3 位作者 滕佩宏 祖莅惠 刘畅 刘桂锋 《中国实验诊断学》 2024年第9期1021-1025,共5页
目的构建跟距联合畸形(talocalcaneal coalition)的X线影像组学模型,并检验其对跟距联合畸形的筛查诊断能力。方法回顾性分析2019年1月至2023年3月吉林大学中日联谊医院放射线科200例行踝关节或足部X线检查的患者临床放射资料(跟距联合... 目的构建跟距联合畸形(talocalcaneal coalition)的X线影像组学模型,并检验其对跟距联合畸形的筛查诊断能力。方法回顾性分析2019年1月至2023年3月吉林大学中日联谊医院放射线科200例行踝关节或足部X线检查的患者临床放射资料(跟距联合阳性及阴性各100例),手动勾画跟距联合畸形所在影像学区域,基于Python-pyradiomics库初步提取影像组学特征,通过曼-惠特尼U检验及最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)算法实现数据降维和特征筛选,用支持向量机(support vector machine,SVM)对筛选得到的影像组学特征分类建模,最终以受试者工作特征(receiver operating characteristic,ROC)曲线的曲线下面积(area under the curve,AUC)、精确度、召回率、敏感度、特异度及F1分数评价模型的诊断效能。结果从X线图像中初步提取到105个组学特征,经曼-惠特尼U检验及LASSO算法筛选出7个强相关性特征,最终以SVM分类器所构建模型的测试集AUC值为0.93,精确度、召回率、敏感度、特异度和F1分数分别为88%、85%、93%、92%、88%,对跟距联合畸形有良好的筛查诊断能力。结论基于X线的影像组学模型可作为筛查诊断跟距联合畸形的一种准确高效的无创性工具,帮助临床医师诊断跟距联合畸形。 展开更多
关键词 跟距联合畸形 影像组学 X线成像 最小绝对收缩和选择算子 支持向量机
下载PDF
轨迹优化的LASSO网格自适应加密方法 被引量:5
12
作者 张松 侯明善 《系统工程与电子技术》 EI CSCD 北大核心 2016年第5期1195-1200,共6页
针对轨迹优化直接方法,提出了以控制变量曲率为基础的最小绝对收缩与选择算子(least absolute shrinkage and selection operator,LASSO)网格自适应加密策略,用于提高优化精度。以高分辨率二分网格节点为中心,构造径向基函数逼近控制曲... 针对轨迹优化直接方法,提出了以控制变量曲率为基础的最小绝对收缩与选择算子(least absolute shrinkage and selection operator,LASSO)网格自适应加密策略,用于提高优化精度。以高分辨率二分网格节点为中心,构造径向基函数逼近控制曲线,利用LASSO方法估计径向基函数系数,并自动筛选出位于控制曲线曲率极大区间的高分辨率节点加密当前网格。本文方法不需要进行状态和控制误差估计,适应性和通用性强。两组典型算例验证了方法的有效性。 展开更多
关键词 轨迹优化 网格加密 最小绝对收缩与选择 径向基函数
下载PDF
微阵列数据中的先验信息对基于LASSO变量选择方法影响的模拟研究 被引量:2
13
作者 陈江鹏 彭斌 +3 位作者 文雯 唐小静 文小焱 胡珊 《中国卫生统计》 CSCD 北大核心 2015年第3期407-409,413,共4页
目的探讨微阵列数据中的先验信息对基于LASSO变量选择方法的影响。方法设置真实模型后,逐步融合先验信息,采用R、MATLAB软件编程,模拟比较先验信息对LASSO,group LASSO(简称为g LASSO)中的non-overlap group LASSO(简称为nog LASSO)和ov... 目的探讨微阵列数据中的先验信息对基于LASSO变量选择方法的影响。方法设置真实模型后,逐步融合先验信息,采用R、MATLAB软件编程,模拟比较先验信息对LASSO,group LASSO(简称为g LASSO)中的non-overlap group LASSO(简称为nog LASSO)和overlap group LASSO(简称为og LASSO)变量选择的影响。结果经典的LASSO、og LASSO变量选择方法在处理模拟微阵列数据时具有较好的预测精度(AUCLASSO=0.8915≈AUCog LASSO=0.8923>AUCnog LASSO=0.8396,MSEnog LASSO=0.1358>MSEog LASSO=0.0975≈MSELASSO=0.0928),LASSO可解释性最强(平均入选模型基因数分别为21.52、111.95、101.01)。nog LASSO在处理基因通路信息时,当[X295]被错分至第19个通路后,尽管未改变其效应值,但入选模型次数大为减少,预测精度下降较为明显,而og LASSO表现更稳健。结论融合微阵列数据中的先验信息并未提高基于LASSO变量选择方法的预测性能及效率,经典的LASSO变量选择方法仍为处理微阵列数据的有效方法。 展开更多
关键词 变量选择 lasso算法 模拟
下载PDF
基于Nomogram模型鉴别肺腺癌病理亚型的临床价值
14
作者 王朝晖 岳军艳 《医学影像学杂志》 2024年第8期50-53,共4页
目的 探讨基于最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归分析构建Nomogram模型预测原位腺癌(AIS)、微浸润腺癌(MIA)及浸润性腺癌(IAC)的价值。方法 选取本院97例经手术病理证实且病理亚型明... 目的 探讨基于最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归分析构建Nomogram模型预测原位腺癌(AIS)、微浸润腺癌(MIA)及浸润性腺癌(IAC)的价值。方法 选取本院97例经手术病理证实且病理亚型明确的肺腺癌患者,将AIS和MIA归为第1组,IAC为第2组,比较两组患者年龄、性别、吸烟史、长径、短径及免疫组化Ki-67等临床医学特征差异,采用3D Slicer软件进行图像分割,特征提取与选择,通过LASSO算法对特征进行降维,筛选影像组学特征构建预测模型。再采用R软件的rms工具包构建Nomogram模型,计算ROC曲线下面积(AUC),以评价Nomogram模型鉴别肺磨玻璃结节病理亚型的效能。结果 1)性别、吸烟史、长径、短径及免疫组化Ki-67等临床医学特征均差异无统计学意义(P>0.05);2)筛选7个CT影像组学特征:平面度、大依赖低灰度强调、小波变换LHL第十百分位、小波变换HLL第十百分位、小波变换最小值、小波变换均值及小依赖低灰度强度比较,差异均有统计学意义(P均<0.05);3)基于CT影像组学特征建立预测肺磨玻璃结节病理亚型的Nomogram模型,训练集中AUC为0.863,准确率为87.9%,灵敏度为67.9%,特异度为91.1%;验证集中AUC为0.792,准确率为75.0%,灵敏度为66.7%,特异度为90.5%,可见此Nomogram模型具有较好的预测效能。结论 对于预测肺腺癌浸润程度,Nomogram模型具有明显优势,可作为一种鉴别手段。 展开更多
关键词 肺磨玻璃结节 最小绝对收缩和选择算子 Nomogram模型 病理亚型 体层摄影术 X线计算机
下载PDF
基于DGA与TPE-LightGBM的变压器故障诊断
15
作者 杨金鑫 廖才波 +3 位作者 胡雄 朱文清 张旭 刘邦 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第4期70-77,共8页
油中溶解气体分析(dissolved gas analysis,DGA)对变压器故障的早期预警及诊断具有重要意义。为了提升变压器故障诊断的准确性及可靠性,提出一种基于树结构概率密度估计(tree-structured parzen estimator,TPE)算法优化轻量级梯度提升机... 油中溶解气体分析(dissolved gas analysis,DGA)对变压器故障的早期预警及诊断具有重要意义。为了提升变压器故障诊断的准确性及可靠性,提出一种基于树结构概率密度估计(tree-structured parzen estimator,TPE)算法优化轻量级梯度提升机(light gradient boosting machine,LightGBM)的变压器故障诊断方法。首先,建立包含油中气体比值、编码等16维DGA特征集合,采用最小绝对收缩和选择(least absolute shrinkage and selection opera-tor,LASSO)算法选择用于变压器故障诊断的有效特征量;其次,构建基于LightGBM的变压器故障诊断方法,并引入TPE算法对LightGBM诊断模型参数进行优化,形成最优故障诊断模型;最后,选用精确度、召回率和F1分数等评价指标对所提诊断模型性能进行评估。研究结果表明,TPE-LightGBM的平均准确率为90.23%,其诊断精度及鲁棒性均优于RF和XGBoost等算法。同时,与现场常用的三比值法进行对比,所提方法的准确性和可靠性均有显著提升。该方法可有效提升电力变压器的智能运维水平。 展开更多
关键词 变压器 油中溶解气体 故障诊断 树结构概率密度估计 lasso算法 轻量级梯度提升机
下载PDF
基于Lasso的稀疏微波成像分块成像原理与方法研究(英文) 被引量:1
16
作者 向寅 张冰尘 洪文 《雷达学报(中英文)》 CSCD 2013年第3期271-277,共7页
稀疏微波成像需要使用相对复杂的非线性处理方法,这些方法难于处理大场景成像问题,为此,该文提出了一种适用于大场景稀疏微波成像的分块成像方法。该方法首先将大场景观测数据和成像区域分割成一一对应的子数据块和子区域,然后利用基于L... 稀疏微波成像需要使用相对复杂的非线性处理方法,这些方法难于处理大场景成像问题,为此,该文提出了一种适用于大场景稀疏微波成像的分块成像方法。该方法首先将大场景观测数据和成像区域分割成一一对应的子数据块和子区域,然后利用基于Lasso的稀疏微波成像方法对各子区域独立重建,最后拼接子区域重建结果得到大场景整体图像。相比于对稀疏观测场景进行整体重建,该分块处理方法可以控制每次重建所涉及的数据量,同时理论分析表明分块处理稀疏场景重建误差不超过整体重建误差上界的两倍。数值仿真及实测数据处理结果验证了该分块处理方法的有效性。 展开更多
关键词 微波成像 稀疏信号处理 稀疏微波成像 lasso 分块成像
下载PDF
基于自噬基因的度洛西汀抗抑郁疗效预测模型的构建
17
作者 李偲媛 魏宇梅 +2 位作者 和申 曾端 李华芳 《临床精神医学杂志》 CAS 2024年第2期113-117,共5页
目的:通过生物信息学方法构建基于自噬基因的度洛西汀抗抑郁疗效预测模型。方法:在高通量基因表达数据库中下载GSE146446数据集,该芯片包括96例患者接受抗抑郁药物度洛西汀8周的治疗,组织样本为全血样本,以度洛西汀治疗8周后是否有效分... 目的:通过生物信息学方法构建基于自噬基因的度洛西汀抗抑郁疗效预测模型。方法:在高通量基因表达数据库中下载GSE146446数据集,该芯片包括96例患者接受抗抑郁药物度洛西汀8周的治疗,组织样本为全血样本,以度洛西汀治疗8周后是否有效分组,筛选两组间的差异表达基因,与自噬基因集取交集。利用最小绝对值收敛和选择算法回归(LASSO)及Logistic回归构建疗效预测模型。结果:SPNS1、ITPR3基因的表达水平均为度洛西汀抗抑郁疗效的影响因素(P均<0.05)。LASSO-Logistic回归模型:Logit(P)=33.7846+(-2.8615×SPNS1表达水平)+(-1.7716×ITPR3表达水平),其中Logit(P)=ln[P/(1-P)]。结论:基于自噬相关基因(SPNS1、ITPR3)表达量的度洛西汀的抗抑郁疗效预测模型具有较好的区分度、校准度以及疗效预测效能,未来可能为抑郁症患者使用度洛西汀药物治疗提供更为科学可靠的证据。 展开更多
关键词 抑郁症 自噬 自噬相关基因 预测模型 最小绝对值收敛和选择算法回归-Logistic回归模型
下载PDF
基于LASSO-ISAPSO-ELM的含蜡原油管道蜡沉积速率预测 被引量:3
18
作者 骆正山 潘柯成 《安全与环境工程》 CAS CSCD 北大核心 2022年第6期69-77,共9页
为提高含蜡原油管道蜡沉积速率的预测精度,保障含蜡原油管道安全运行,提出一种基于套索算法(LASSO)和改进模拟退火粒子群算法(ISAPSO)融合极限学习机(ELM)的含蜡原油管道蜡沉积速率预测模型。首先利用LASSO提取含蜡原油管道蜡沉积速率... 为提高含蜡原油管道蜡沉积速率的预测精度,保障含蜡原油管道安全运行,提出一种基于套索算法(LASSO)和改进模拟退火粒子群算法(ISAPSO)融合极限学习机(ELM)的含蜡原油管道蜡沉积速率预测模型。首先利用LASSO提取含蜡原油管道蜡沉积速率的关键影响因素,简化样本指标;然后对模拟退火粒子群(SAPSO)的种群初始化、惯性权重和学习因子进行改进,并利用其优化ELM的输入权重和隐含层节点阈值;最后以青海某厂原油为试验油样,通过开展室内环道试验获取85组数据样本,将预处理后的样本数据集代入模型计算,对含蜡原油管道蜡沉积速率进行预测,并将LASSO-ISAPSO-ELM模型的预测结果与BPNN模型和PSO-SVM模型的预测结果进行对比。结果表明:经LASSO筛选,得到5项影响含蜡原油管道蜡沉积速率的关键因素;ISAPSO比SAPSO提前43代收敛且寻优精度更优;LASSO-ISAPSO-ELM模型预测结果的均方根误差、平均相对误差和希尔不等系数分别低达0.06983、0.69373%、0.00336,与其他模型相比,LASSO-ISAPSO-ELM模型的预测精度更高。 展开更多
关键词 含蜡原油管道 蜡沉积速率 套索算法(lasso) 改进模拟退火粒子群算法(ISAPSO) 极限学习机(ELM)
下载PDF
A prognostic four-gene signature and a therapeutic strategy for hepatocellular carcinoma:Construction and analysis of a circRNA-mediated competing endogenous RNA network
19
作者 Hai-Yan Zhang Jia-Jie Zhu +3 位作者 Zong-Ming Liu Yu-Xuan Zhang Jia-Jia Chen Ke-Da Chen 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2024年第3期272-287,共16页
Background:Hepatocellular carcinoma(HCC)has a poor long-term prognosis.The competition of circular RNAs(circRNAs)with endogenous RNA is a novel tool for predicting HCC prognosis.Based on the alterations of circRNA reg... Background:Hepatocellular carcinoma(HCC)has a poor long-term prognosis.The competition of circular RNAs(circRNAs)with endogenous RNA is a novel tool for predicting HCC prognosis.Based on the alterations of circRNA regulatory networks,the analysis of gene modules related to HCC is feasible.Methods:Multiple expression datasets and RNA element targeting prediction tools were used to construct a circRNA-microRNA-mRNA network in HCC.Gene function,pathway,and protein interaction analyses were performed for the differentially expressed genes(DEGs)in this regulatory network.In the proteinprotein interaction network,hub genes were identified and subjected to regression analysis,producing an optimized four-gene signature for prognostic risk stratification in HCC patients.Anti-HCC drugs were excavated by assessing the DEGs between the low-and high-risk groups.A circRNA-microRNA-hub gene subnetwork was constructed,in which three hallmark genes,KIF4A,CCNA2,and PBK,were subjected to functional enrichment analysis.Results:A four-gene signature(KIF4A,CCNA2,PBK,and ZWINT)that effectively estimated the overall survival and aided in prognostic risk assessment in the The Cancer Genome Atlas(TCGA)cohort and International Cancer Genome Consortium(ICGC)cohort was developed.CDK inhibitors,PI3K inhibitors,HDAC inhibitors,and EGFR inhibitors were predicted as four potential mechanisms of drug action(MOA)in high-risk HCC patients.Subsequent analysis has revealed that PBK,CCNA2,and KIF4A play a crucial role in regulating the tumor microenvironment by promoting immune cell invasion,regulating microsatellite instability(MSI),and exerting an impact on HCC progression.Conclusions:The present study highlights the role of the circRNA-related regulatory network,identifies a four-gene prognostic signature and biomarkers,and further identifies novel therapy for HCC. 展开更多
关键词 Hepatocellular carcinoma circRNA-related ceRNA network Biomarker Least absolute shrinkage and selection operator BIOINFORMATICS
下载PDF
早期帕金森病诊断评分模型构建及效能验证
20
作者 汪国宏 王玉婷 +2 位作者 王亚奇 胡婉华 夏仕勇 《山东医药》 CAS 2024年第19期15-19,共5页
目的构建早期帕金森病(PD)的诊断评分模型,并验证其效能。方法选择PD患者75例及性别、年龄与PD患者相匹配的健康志愿者75例,随机分为验证组(PD患者38例、健康志愿者37例)与训练组(PD患者37例、健康志愿者38例)。收集受试者病历资料。用... 目的构建早期帕金森病(PD)的诊断评分模型,并验证其效能。方法选择PD患者75例及性别、年龄与PD患者相匹配的健康志愿者75例,随机分为验证组(PD患者38例、健康志愿者37例)与训练组(PD患者37例、健康志愿者38例)。收集受试者病历资料。用最小绝对收缩和选择算子(LASSO)算法,通过十折交叉验证确定最优参数,从训练组相关资料中筛选出具有相关性的诊断因子,并根据各因子系数构建诊断评分模型。通过Logistic回归构建列线图;绘制受试者工作特征曲线,通过曲线下面积和校准曲线评价该模型的诊断效能以及拟合度。结果训练组与验证组相关资料比较差异无统计学意义(P均>0.05)。训练组经LASSO算法确定最佳参数λ=0.052,筛选出具鉴别能力的7个指标,诊断评分模型公式=-1.048+0.961×睡眠行为障碍筛查问卷(RBDSQ)评分+0.079×汉密尔顿焦虑量表14项(HAMA-14)评分-0.0002×神经元特异性烯醇化酶(NSE)-0.011×血管内皮生长因子(VEGF)-0.001×尿酸-0.046×各向异性(FA)+0.003×舒张末期血流速度(DFV)。多因素Logistic回归分析确认所筛选的7个指标可作为早期PD患者的独立诊断因子。在验证组中该诊断评分模型用于诊断早期PD患者的曲线下面积为0.91,高于7个因子单独诊断早期PD的曲线下面积;拟合曲线显示该模型有较好的拟合优度。结论基于RBDSQ评分、HAMA-14评分、VEGF、FA、NSE、尿酸及DFV构建了早期PD的诊断评分模型,该模型有较高的诊断效能。 展开更多
关键词 帕金森病 早期 最小绝对收缩和选择算子 诊断评分模型 诊断效能
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部