Up to now, some technology of neural networks are developed to solve the non-linearity of researched objects and to implement the adaptive control in many engineering fields, and some good results were achieved. Thoug...Up to now, some technology of neural networks are developed to solve the non-linearity of researched objects and to implement the adaptive control in many engineering fields, and some good results were achieved. Though it puts some questions over to design application structure with neural networks, it is really unknowable about the study mechanism of those. But, the importance of study ratio is widely realized by many scientists now, and some methods on the modification of that are provided. The main subject is how to improve the stability and how to increase the convergent rate of networks by defining a good form of the study ratio. Here a new algorithm named LDBP (least disturbance BP algorithm) is proposed to calculate the ratio online according to the output errors, the weights of network and the input values. The algorithm is applied to the control of an autonomous underwater vehicle designed by HEU. The experimental results show that the algorithm has good performance and the controller designed based on it is fine.展开更多
文摘Up to now, some technology of neural networks are developed to solve the non-linearity of researched objects and to implement the adaptive control in many engineering fields, and some good results were achieved. Though it puts some questions over to design application structure with neural networks, it is really unknowable about the study mechanism of those. But, the importance of study ratio is widely realized by many scientists now, and some methods on the modification of that are provided. The main subject is how to improve the stability and how to increase the convergent rate of networks by defining a good form of the study ratio. Here a new algorithm named LDBP (least disturbance BP algorithm) is proposed to calculate the ratio online according to the output errors, the weights of network and the input values. The algorithm is applied to the control of an autonomous underwater vehicle designed by HEU. The experimental results show that the algorithm has good performance and the controller designed based on it is fine.