期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Least energy solutions for semilinear Schrdinger equation with electromagnetic fields and critical growth 被引量:2
1
作者 TANG ZhongWei WANG YanLi 《Science China Mathematics》 SCIE CSCD 2015年第11期2317-2328,共12页
We study a class of semilinear SchrSdinger equation with electromagnetic fields and the nonlinearity term involving critical growth. We assume that the potential of the equation includes a parameter A and can be negat... We study a class of semilinear SchrSdinger equation with electromagnetic fields and the nonlinearity term involving critical growth. We assume that the potential of the equation includes a parameter A and can be negative in some domain. Moreover, the potential behaves like potential well when the parameter A is large. Using variational methods combining Nehari methods, we prove that the equation has a least energy solution which, as the parameter A becomes large, localized near the bottom of the potential well. Our result is an extension of the corresponding result for the SchrSdinger equation which involves critical growth but does not involve electromagnetic fields. 展开更多
关键词 semilinear Schr6dinger equation least energy solution critical growth electromagnetic fields
原文传递
Least energy solutions of nonlinear Schr odinger equations involving the fractional Laplacian and potential wells 被引量:1
2
作者 NIU MiaoMiao TANG ZhongWei 《Science China Mathematics》 SCIE CSCD 2017年第2期261-276,共16页
We are concerned with the existence of least energy solutions of nonlinear Schrodinger equations involving the fractional Laplacian(-△)%s u(x)+λV(x)u(x)=u(x)^(p-1),u(x)〉=0,x∈R^N,for sufficiently lar... We are concerned with the existence of least energy solutions of nonlinear Schrodinger equations involving the fractional Laplacian(-△)%s u(x)+λV(x)u(x)=u(x)^(p-1),u(x)〉=0,x∈R^N,for sufficiently large λ,2〈p〈N-2s^-2N for N≥2. V(x) is a real continuous function on RN. Using variational methods we prove the existence of least energy solution uλ(x) which localizes near the potential well int V-1 (0) for A large. Moreover, if the zero sets int V-1 (0) of V(x) include more than one isolated component, then ux(x) will be trapped around all the isolated components. However, in Laplacian case s = 1, when the parameter A is large, the corresponding least energy solution will be trapped around only one isolated component and become arbitrarily small in other components of int V^-1(0). This is the essential difference with the Laplacian problems since the operator (-△)s is nonlocal. 展开更多
关键词 nonlinear SchrSdinger equation least energy solution fractional Laplacian variational methods
原文传递
Uniqueness and Radial Symmetry of Least Energy Solution for a Semilinear Neumann Problem
3
作者 Zheng-ping Wang Huan-song Zhou 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2008年第3期473-482,共10页
Consider the following Neumann problem d△u- u + k(x)u^p = 0 and u 〉 0 in B1, δu/δv =0 on OB1,where d 〉 0, B1 is the unit ball in R^N, k(x) = k(|x|) ≠ 0 is nonnegative and in C(-↑B1), 1 〈 p 〈 N+2/N... Consider the following Neumann problem d△u- u + k(x)u^p = 0 and u 〉 0 in B1, δu/δv =0 on OB1,where d 〉 0, B1 is the unit ball in R^N, k(x) = k(|x|) ≠ 0 is nonnegative and in C(-↑B1), 1 〈 p 〈 N+2/N-2 with N≥ 3. It was shown in [2] that, for any d 〉 0, problem (*) has no nonconstant radially symmetric least energy solution if k(x) ≡ 1. By an implicit function theorem we prove that there is d0 〉 0 such that (*) has a unique radially symmetric least energy solution if d 〉 d0, this solution is constant if k(x) ≡ 1 and nonconstant if k(x) ≠ 1. In particular, for k(x) ≡ 1, do can be expressed explicitly. 展开更多
关键词 Implicit function theorem least energy solution radial symmetry Neumann problem ELLIPTIC
原文传递
A COMPACT EMBEDDING RESULT FOR NONLOCAL SOBOLEV SPACES AND MULTIPLICITY OF SIGN-CHANGING SOLUTIONS FOR NONLOCAL SCHRÖDINGER EQUATIONS
4
作者 Xu ZHANG Hao ZHAI Fukun ZHAO 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1853-1876,共24页
For any s∈(0,1),let the nonlocal Sobolev space X^(s)(R^(N))be the linear space of Lebesgue measure functions from R^(N) to R such that any function u in X^(s)(R^(N))belongs to L2(R^(N))and the function(x,y)→(u(x)-u... For any s∈(0,1),let the nonlocal Sobolev space X^(s)(R^(N))be the linear space of Lebesgue measure functions from R^(N) to R such that any function u in X^(s)(R^(N))belongs to L2(R^(N))and the function(x,y)→(u(x)-u(y)√K(x-y)is in L^(2)(R^(N),R^(N)).First,we show,for a coercive function V(x),the subspace E:={u∈X^s(R^N):f_(R)^N}V(x)u^(2)dx<+∞}of X^(s)(R^(N))is embedded compactly into L^(p)(R^(N))for p\in[2,2_(s)^(*)),where 2_(s)^(*)is the fractional Sobolev critical exponent.In terms of applications,the existence of a least energy sign-changing solution and infinitely many sign-changing solutions of the nonlocal Schrödinger equation-L_(k)u+V(x)u=f(x,u),x∈R^N are obtained,where-L_(K)is an integro-differential operator and V is coercive at infinity. 展开更多
关键词 sign-changing solution integro-differential operator least energy variational method
下载PDF
THEORETICAL BASIS AND GENERAL OPTIMAL FORMULATIONS OF ISOPARAMETRIC GENERALIZED HYBRID/MIXED ELEMENT MODEL FOR IMPROVED STRESS ANALYSIS 被引量:2
5
作者 张武 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1993年第3期277-288,共12页
By the modified three-field Hu-Washizu principle, this paper establishes a theoretical founda- tion and general convenient formulations to generate convergent stable generalized hybrid/mixed cle- ment (GH/ME) model wh... By the modified three-field Hu-Washizu principle, this paper establishes a theoretical founda- tion and general convenient formulations to generate convergent stable generalized hybrid/mixed cle- ment (GH/ME) model which is invariant with respect to coordinate, insensitive to geometric distortion and suitable for improved stress computation. In the two proposed formulations, the stress equilibrium and orthogonality constraints are imposed through incompatible displacement and internal strain modes respectively. The proposed model by the general formulations in this paper is characterized by including as- sumed stress/strain, assumed stress, variable-node, singular, compatible and incompatible GH/ME models. When using regular meshes or the constant values of the isoparametric Jacobian Det in the assumed strain in- terpolation, the incompatible GH/ME model degenerates to the hybrid/mixed element model. Both general and concrete guidelines for the optimal selection of element shape functions are suggested. By means of the GH/ME theory in this paper, a family of new GH/ME can be and have been easily constructed. The software can also be developed conveniently because all the standard subroutines for the corresponding isoparametric displacement elements can be utilized directly. 展开更多
关键词 generalized hybrid/mixed model element formulation equilibrium orthogonality least energy fit convergence stability coordinate invariance distortion insensitivity accuracy
下载PDF
On a Class of Infinite-Dimensional Hamiltonian Systems with Asymptotically Periodic Nonlinearities 被引量:1
6
作者 Minbo YANG Zifei SHEN Yanheng DING 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2011年第1期45-58,共14页
The authors study the existence of homoclinic type solutions for the following system of diffusion equations on R × RN:{atu-xu + b ·▽xu + au + V(t,x)v = Hv(t,x,u,v),-atv-xv-b·▽xv + av + V(... The authors study the existence of homoclinic type solutions for the following system of diffusion equations on R × RN:{atu-xu + b ·▽xu + au + V(t,x)v = Hv(t,x,u,v),-atv-xv-b·▽xv + av + V(t,x)u = Hu(t,x,u,v),where z =(u,v):R × RN → Rm × Rm,a 〉 0,b =(b1,···,bN) is a constant vector and V ∈ C(R × RN,R),H ∈ C1(R × RN × R2m,R).Under suitable conditions on V(t,x) and the nonlinearity for H(t,x,z),at least one non-stationary homoclinic solution with least energy is obtained. 展开更多
关键词 Variational methods least energy solution Hamiltonian system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部