The Bit Error Rate (BER) performance of a Turbo Product Code (TPC) based Space-Time Block Coding (STBC) multiuser wireless system in the frequency-selective channels has been investigated. Both of the good error...The Bit Error Rate (BER) performance of a Turbo Product Code (TPC) based Space-Time Block Coding (STBC) multiuser wireless system in the frequency-selective channels has been investigated. Both of the good error correcting capability of TPC and the large diversity gain of STBC can be achieved simultaneously. A Least Square Error-Recursive Least Square (LSE-RLS) algorithm is applied to estimate the channel and cancel the interference. Simulations show that the proposed system can obtain about 2.7dB gain in Es/N0 at the BER of 10^-3.展开更多
Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative ad...Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative adaptive filtering design based on the minimum symbol error rate (MSER) criterion for communication applications. It is shown that the MSER filtering is smarter, as it exploits the non-Gaussian distribution of filter output effectively. Consequently, it provides significant performance gain in terms of smaller symbol error over the MMSE approach. Adopting Parzen window or kernel density estimation for a probability density function, a block-data gradient adaptive MSER algorithm is derived. A stochastic gradient adaptive MSER algorithm, referred to as the least symbol error rate, is further developed for sample-by-sample adaptive implementation of the MSER filtering. Two applications, involving single-user channel equalization and beamforming assisted receiver, are included to demonstrate the effectiveness and generality of the proposed adaptive MSER filtering approach.展开更多
In this letter,by employing Gaussian distribution to approximate the probability density function(pdf) of the extrinsic information at the output of the multiuser detector as a function of the pdf of the input extrins...In this letter,by employing Gaussian distribution to approximate the probability density function(pdf) of the extrinsic information at the output of the multiuser detector as a function of the pdf of the input extrinsic messages,it is concluded that the Probabilistic Data Association(PDA) algorithm is equivalent to the Soft Interference Cancellation plus Minimum Mean Square Error algo-rithm(SIC-MMSE) .展开更多
The contradiction of variable step size least mean square(LMS)algorithm between fast convergence speed and small steady-state error has always existed.So,a new algorithm based on the combination of logarithmic and sym...The contradiction of variable step size least mean square(LMS)algorithm between fast convergence speed and small steady-state error has always existed.So,a new algorithm based on the combination of logarithmic and symbolic function and step size factor is proposed.It establishes a new updating method of step factor that is related to step factor and error signal.This work makes an analysis from 3 aspects:theoretical analysis,theoretical verification and specific experiments.The experimental results show that the proposed algorithm is superior to other variable step size algorithms in convergence speed and steady-state error.展开更多
A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE...A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance.展开更多
The matrix inversion operation is needed in the MMSE decoding algorithm of orthogonal space-time block coding (OSTBC) proposed by Papadias and Foschini. In this paper, an minimum mean square error (MMSE) decoding ...The matrix inversion operation is needed in the MMSE decoding algorithm of orthogonal space-time block coding (OSTBC) proposed by Papadias and Foschini. In this paper, an minimum mean square error (MMSE) decoding algorithm without matrix inversion is proposed, by which the computational complexity can be reduced directly but the decoding performance is not affected.展开更多
Propagation models are the foundation for radio planning in mobile networks. They are widely used during feasibility studies and initial network deployment, or during network extensions, particularly in new cities. Th...Propagation models are the foundation for radio planning in mobile networks. They are widely used during feasibility studies and initial network deployment, or during network extensions, particularly in new cities. They can be used to calculate the power of the signal received by a mobile terminal, evaluate the coverage radius, and calculate the number of cells required to cover a given area. This paper takes into account the standard k factors model and then uses the differential evolution algorithm to set up a propagation model adapted to the physical environment of the Cameroonian cities of Bertoua. Drive tests were made on the LTE TDD network in the city of Bertoua. Differential evolution algorithm is used as the optimization algorithm to deduct a propagation model which fits the environment of the considered town. The calculation of the root mean square error between the actual data from the drive tests and the prediction data from the implemented model allows the validation of the obtained results. A comparative study made between the RMSE value obtained by the new model and those obtained by the Okumura Hata and free space models, allowed us to conclude that the new model obtained is better and more representative of our local environment than the Okumura Hata currently used. The implementation shows that Differential evolution can perform well and solve this kind of optimization problem;the newly obtained models can be used for radio planning in the city of Bertoua in Cameroon.展开更多
Network planning is essential for the construction and the development of wireless networks. The network planning cannot be possible without an appropriate propagation model which in fact is its foundation. Initially ...Network planning is essential for the construction and the development of wireless networks. The network planning cannot be possible without an appropriate propagation model which in fact is its foundation. Initially used mainly for mobile radio networks, the optimization of propagation model is becoming essential for efficient deployment of the network in different types of environment, namely rural, suburban and urban especially with the emergence of concepts such as digital terrestrial television, smart cities, Internet of Things (IoT) with wide deployment for different use cases such as smart grid, smart metering of electricity, gas and water. In this paper we use an optimization algorithm that is inspired by the principles of magnetic field theory namely Magnetic Optimization Algorithm (MOA) to tune COST231-Hata propagation model. The dataset used is the result of drive tests carry out on field in the town of Limbe in Cameroon. We take into account the standard K-factor model and then use the MOA algorithm in order to set up a propagation model adapted to the physical environment of a town. The town of Limbe is used as an implementation case, but the proposed method can be used everywhere. The calculation of the root mean square error (RMSE) between the real data from the radio measurements and the prediction data obtained after the implementation of MOA allows the validation of the results. A comparative study between the value of the RMSE obtained by the new model and those obtained by the optimization using linear regression, by the standard COST231-Hata models, and the free space model is also done, this allows us to conclude that the new model obtained using MOA for the city of Limbe is better and more representative of this local environment than the standard COST231-Hata model. The new model obtained can be used for radio planning in the city of Limbé in Cameroon.展开更多
为降低电磁干扰对信号传输的影响,分析了应答器上行链路信号传输过程及其易遭受干扰信号的特点,设计了基于符号最小均方误差(least mean square,LMS)算法的自适应解调方法。为在硬件平台中实现该解调方法,通过仿真计算,确定LMS算法的自...为降低电磁干扰对信号传输的影响,分析了应答器上行链路信号传输过程及其易遭受干扰信号的特点,设计了基于符号最小均方误差(least mean square,LMS)算法的自适应解调方法。为在硬件平台中实现该解调方法,通过仿真计算,确定LMS算法的自适应算法中间变量变化范围,使用截位操作完成权值系数的更新,设置均衡器长度、步长因子、中值滤波系数分别为1、1/64、16,可在不占用过多硬件资源情况下获得良好的解调性能。解调算法在现场可编程门阵列(field programmable gata array,FPGA)上予以验证,实验表明,当信噪比为6 dB时,FPGA中自适应解调误码率为0.000001,在信噪比大于等于6 dB时,实测误码率与仿真分析误码率基本一致;FPGA自适应解调方法在列车不同速度等级下误码率均小于10^(-6)。展开更多
传统的误差配准算法假设系统偏差恒定或缓慢变化,当系统误差发生突变或快速变化时,这一假设不再成立。针对这一问题,研究了时变条件下的误差配准算法,引入渐消因子,对常规的基于地心地固坐标系的广义最小二乘算法(generalized least squ...传统的误差配准算法假设系统偏差恒定或缓慢变化,当系统误差发生突变或快速变化时,这一假设不再成立。针对这一问题,研究了时变条件下的误差配准算法,引入渐消因子,对常规的基于地心地固坐标系的广义最小二乘算法(generalized least squares algorithm based on the earth-centered earth-fixed coordinate system,ECEF-GLS)进行了修正,弱化历史量测对配准的影响,并对渐消因子的选取问题进行了研究,给出了合理的设计方法。算法验证表明,基于渐消因子的ECEF-GLS估计算法能够对时变的系统偏差进行有效估计,精度满足配准要求。展开更多
针对无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计锂电池荷电状态(state of charge,SOC)时精度低、稳定性差、产生的sigma点过多导致计算难度大等不足,提出一种基于自适应球形不敏变换方式的无迹卡尔曼滤波(unscented Kalman f...针对无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计锂电池荷电状态(state of charge,SOC)时精度低、稳定性差、产生的sigma点过多导致计算难度大等不足,提出一种基于自适应球形不敏变换方式的无迹卡尔曼滤波(unscented Kalman filter based on adaptive spherical insensitive transformation,ASIT-UKF)算法。该算法通过使用球形不敏变换方式选择权系数以及初始化一元向量对sigma点的产生进行选取。与UKF算法相比,ASIT-UKF算法产生的sigma点减少近50%,使得算法的计算复杂度大大降低。同时,将产生的所有sigma点进行单位球形面上的归一化处理,提高了数值的稳定性。考虑到实际运行中锂电池系统噪声干扰带来的不确定性,加入Sage-Husa自适应滤波器对不确定性噪声的干扰进行实时更新和修正,以达到提高在线锂电池SOC估计精度的目的。最后,将均方根误差和最大绝对误差计算公式引入到性能估计指标中。实验结果表明,ASIT-UKF算法在准确度、鲁棒性和收敛性方面具有优越的性能。展开更多
文摘The Bit Error Rate (BER) performance of a Turbo Product Code (TPC) based Space-Time Block Coding (STBC) multiuser wireless system in the frequency-selective channels has been investigated. Both of the good error correcting capability of TPC and the large diversity gain of STBC can be achieved simultaneously. A Least Square Error-Recursive Least Square (LSE-RLS) algorithm is applied to estimate the channel and cancel the interference. Simulations show that the proposed system can obtain about 2.7dB gain in Es/N0 at the BER of 10^-3.
文摘Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative adaptive filtering design based on the minimum symbol error rate (MSER) criterion for communication applications. It is shown that the MSER filtering is smarter, as it exploits the non-Gaussian distribution of filter output effectively. Consequently, it provides significant performance gain in terms of smaller symbol error over the MMSE approach. Adopting Parzen window or kernel density estimation for a probability density function, a block-data gradient adaptive MSER algorithm is derived. A stochastic gradient adaptive MSER algorithm, referred to as the least symbol error rate, is further developed for sample-by-sample adaptive implementation of the MSER filtering. Two applications, involving single-user channel equalization and beamforming assisted receiver, are included to demonstrate the effectiveness and generality of the proposed adaptive MSER filtering approach.
文摘In this letter,by employing Gaussian distribution to approximate the probability density function(pdf) of the extrinsic information at the output of the multiuser detector as a function of the pdf of the input extrinsic messages,it is concluded that the Probabilistic Data Association(PDA) algorithm is equivalent to the Soft Interference Cancellation plus Minimum Mean Square Error algo-rithm(SIC-MMSE) .
基金the National Natural Science Foundation of China(No.51575328,61503232).
文摘The contradiction of variable step size least mean square(LMS)algorithm between fast convergence speed and small steady-state error has always existed.So,a new algorithm based on the combination of logarithmic and symbolic function and step size factor is proposed.It establishes a new updating method of step factor that is related to step factor and error signal.This work makes an analysis from 3 aspects:theoretical analysis,theoretical verification and specific experiments.The experimental results show that the proposed algorithm is superior to other variable step size algorithms in convergence speed and steady-state error.
基金Supported by the National Natural Science Foundation of China (No. 61001105), the National Science and Technology Major Projects (No. 2011ZX03001- 007- 03) and Beijing Natural Science Foundation (No. 4102043).
文摘A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance.
文摘The matrix inversion operation is needed in the MMSE decoding algorithm of orthogonal space-time block coding (OSTBC) proposed by Papadias and Foschini. In this paper, an minimum mean square error (MMSE) decoding algorithm without matrix inversion is proposed, by which the computational complexity can be reduced directly but the decoding performance is not affected.
文摘Propagation models are the foundation for radio planning in mobile networks. They are widely used during feasibility studies and initial network deployment, or during network extensions, particularly in new cities. They can be used to calculate the power of the signal received by a mobile terminal, evaluate the coverage radius, and calculate the number of cells required to cover a given area. This paper takes into account the standard k factors model and then uses the differential evolution algorithm to set up a propagation model adapted to the physical environment of the Cameroonian cities of Bertoua. Drive tests were made on the LTE TDD network in the city of Bertoua. Differential evolution algorithm is used as the optimization algorithm to deduct a propagation model which fits the environment of the considered town. The calculation of the root mean square error between the actual data from the drive tests and the prediction data from the implemented model allows the validation of the obtained results. A comparative study made between the RMSE value obtained by the new model and those obtained by the Okumura Hata and free space models, allowed us to conclude that the new model obtained is better and more representative of our local environment than the Okumura Hata currently used. The implementation shows that Differential evolution can perform well and solve this kind of optimization problem;the newly obtained models can be used for radio planning in the city of Bertoua in Cameroon.
文摘Network planning is essential for the construction and the development of wireless networks. The network planning cannot be possible without an appropriate propagation model which in fact is its foundation. Initially used mainly for mobile radio networks, the optimization of propagation model is becoming essential for efficient deployment of the network in different types of environment, namely rural, suburban and urban especially with the emergence of concepts such as digital terrestrial television, smart cities, Internet of Things (IoT) with wide deployment for different use cases such as smart grid, smart metering of electricity, gas and water. In this paper we use an optimization algorithm that is inspired by the principles of magnetic field theory namely Magnetic Optimization Algorithm (MOA) to tune COST231-Hata propagation model. The dataset used is the result of drive tests carry out on field in the town of Limbe in Cameroon. We take into account the standard K-factor model and then use the MOA algorithm in order to set up a propagation model adapted to the physical environment of a town. The town of Limbe is used as an implementation case, but the proposed method can be used everywhere. The calculation of the root mean square error (RMSE) between the real data from the radio measurements and the prediction data obtained after the implementation of MOA allows the validation of the results. A comparative study between the value of the RMSE obtained by the new model and those obtained by the optimization using linear regression, by the standard COST231-Hata models, and the free space model is also done, this allows us to conclude that the new model obtained using MOA for the city of Limbe is better and more representative of this local environment than the standard COST231-Hata model. The new model obtained can be used for radio planning in the city of Limbé in Cameroon.
文摘传统的误差配准算法假设系统偏差恒定或缓慢变化,当系统误差发生突变或快速变化时,这一假设不再成立。针对这一问题,研究了时变条件下的误差配准算法,引入渐消因子,对常规的基于地心地固坐标系的广义最小二乘算法(generalized least squares algorithm based on the earth-centered earth-fixed coordinate system,ECEF-GLS)进行了修正,弱化历史量测对配准的影响,并对渐消因子的选取问题进行了研究,给出了合理的设计方法。算法验证表明,基于渐消因子的ECEF-GLS估计算法能够对时变的系统偏差进行有效估计,精度满足配准要求。
文摘针对无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计锂电池荷电状态(state of charge,SOC)时精度低、稳定性差、产生的sigma点过多导致计算难度大等不足,提出一种基于自适应球形不敏变换方式的无迹卡尔曼滤波(unscented Kalman filter based on adaptive spherical insensitive transformation,ASIT-UKF)算法。该算法通过使用球形不敏变换方式选择权系数以及初始化一元向量对sigma点的产生进行选取。与UKF算法相比,ASIT-UKF算法产生的sigma点减少近50%,使得算法的计算复杂度大大降低。同时,将产生的所有sigma点进行单位球形面上的归一化处理,提高了数值的稳定性。考虑到实际运行中锂电池系统噪声干扰带来的不确定性,加入Sage-Husa自适应滤波器对不确定性噪声的干扰进行实时更新和修正,以达到提高在线锂电池SOC估计精度的目的。最后,将均方根误差和最大绝对误差计算公式引入到性能估计指标中。实验结果表明,ASIT-UKF算法在准确度、鲁棒性和收敛性方面具有优越的性能。