Several ARMA modeling approaches are addressed. In these methods only part of a correlation sequence is employed for estimating parameters. It is satisfying, if the given correlation sequence is of real ARMA, since an...Several ARMA modeling approaches are addressed. In these methods only part of a correlation sequence is employed for estimating parameters. It is satisfying, if the given correlation sequence is of real ARMA, since an ARMA process can be completely determined by part of its correlation se -quence. But for the case of a measured correlation sequence the whole sequence may be used to reduce the effect of error on model parameter estimation. In addition, these methods now do not guarantee a nonnegative spectral estimate. In view of the above-mentioned fact, a constrained least squares fitting technique is proposed which utilizes the whole measured correlation sequence and guarantees a nonnegative spectral estimate.展开更多
This study examines wave interactions with multiple semi-immersed Jarlan-type perforated breakwaters. A numerical model based on linear wave theory and an eigenfunction expansion method has been developed to study the...This study examines wave interactions with multiple semi-immersed Jarlan-type perforated breakwaters. A numerical model based on linear wave theory and an eigenfunction expansion method has been developed to study the hydrodynamic characteristics of breakwaters. The numerical results show a good agreement with previous analytical results and experimental data for limiting cases of double partially immersed impermeable walls and double and triple Jarlan-type breakwaters. The wave transmission coefficient Cv; reflection coefficient CR, and energy dissipation coefficient CE coefficients and the horizontal wave force exerted on the front and rear walls are examined. The results show that CR reaches the maximum value when B/L = 0.46n while it is smallest when B/L=0.46n+0.24 (n=0, 1, 2,...). An economical triple semi-immersed Jarlan-type perforated breakwater can be designed with B/L = 0.25 and CR and CT ranging from 0.25 to 0.32 by choosing a relative draft d/h of 0.35 and a permeability parameter of the perforated front walls being 0.5 for an incident wave number kh nearly equal to 2.0. The triple semi-immersed Jarlan-type perforated breakwaters with significantly reduced CR, will enhance the structure's wave absorption ability, and lead to smaller wave forces compared with the double one. The proposed model may be used to predict the response of a structure in the preliminary design stage for practical engineering.展开更多
文摘Several ARMA modeling approaches are addressed. In these methods only part of a correlation sequence is employed for estimating parameters. It is satisfying, if the given correlation sequence is of real ARMA, since an ARMA process can be completely determined by part of its correlation se -quence. But for the case of a measured correlation sequence the whole sequence may be used to reduce the effect of error on model parameter estimation. In addition, these methods now do not guarantee a nonnegative spectral estimate. In view of the above-mentioned fact, a constrained least squares fitting technique is proposed which utilizes the whole measured correlation sequence and guarantees a nonnegative spectral estimate.
文摘This study examines wave interactions with multiple semi-immersed Jarlan-type perforated breakwaters. A numerical model based on linear wave theory and an eigenfunction expansion method has been developed to study the hydrodynamic characteristics of breakwaters. The numerical results show a good agreement with previous analytical results and experimental data for limiting cases of double partially immersed impermeable walls and double and triple Jarlan-type breakwaters. The wave transmission coefficient Cv; reflection coefficient CR, and energy dissipation coefficient CE coefficients and the horizontal wave force exerted on the front and rear walls are examined. The results show that CR reaches the maximum value when B/L = 0.46n while it is smallest when B/L=0.46n+0.24 (n=0, 1, 2,...). An economical triple semi-immersed Jarlan-type perforated breakwater can be designed with B/L = 0.25 and CR and CT ranging from 0.25 to 0.32 by choosing a relative draft d/h of 0.35 and a permeability parameter of the perforated front walls being 0.5 for an incident wave number kh nearly equal to 2.0. The triple semi-immersed Jarlan-type perforated breakwaters with significantly reduced CR, will enhance the structure's wave absorption ability, and lead to smaller wave forces compared with the double one. The proposed model may be used to predict the response of a structure in the preliminary design stage for practical engineering.