Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted...Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted Kato square root problem for L.More precisely,we prove that the square root L^(1/2)satisfies the weighted L^(p)estimates||L^(1/2)(f)||L_(ω)^p(R^(n))≤C||■f||L_(ω)^p(R^(n);R^(n))for any p∈(1,∞)andω∈Ap(ℝ^(n))(the class of Muckenhoupt weights),and that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,2+ε)andω∈Ap(ℝ^(n))∩RH_(2+ε/p),(R^(n))(the class of reverse Hölder weights),whereε∈(0,∞)is a constant depending only on n and the operator L,and where(2+ε/p)'denotes the Hölder conjugate exponent of 2+ε/p.Moreover,for any given q∈(2,∞),we give a sufficient condition to obtain that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,q)andω∈A_(p)(R^(n))∩pRH_(q/p),(R^(n)).As an application,we prove that when the coefficient matrix A that appears in L satisfies the small BMO condition,the Riesz transform∇L^(−1/2)is bounded on L_(ω)^(p)(ℝ^(n))for any given p∈(1,∞)andω∈Ap(ℝ^(n)).Furthermore,applications to the weighted L^(2)-regularity problem with the Dirichlet or the Neumann boundary condition are also given.展开更多
Estimation of stochastic demand in physical distribution in general and efficient transport routs management in particular is emerging as a crucial factor in urban planning domain. It is particularly important in some...Estimation of stochastic demand in physical distribution in general and efficient transport routs management in particular is emerging as a crucial factor in urban planning domain. It is particularly important in some municipalities such as Tehran where a sound demand management calls for a realistic analysis of the routing system. The methodology involved critically investigating a fuzzy least-squares linear regression approach (FLLRs) to estimate the stochastic demands in the vehicle routing problem (VRP) bearing in mind the customer's preferences order. A FLLR method is proposed in solving the VRP with stochastic demands: approximate-distance fuzzy least-squares (ADFL) estimator ADFL estimator is applied to original data taken from a case study. The SSR values of the ADFL estimator and real demand are obtained and then compared to SSR values of the nominal demand and real demand. Empirical results showed that the proposed method can be viable in solving problems under circumstances of having vague and imprecise performance ratings. The results further proved that application of the ADFL was realistic and efficient estimator to face the sto- chastic demand challenges in vehicle routing system management and solve relevant problems.展开更多
A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approxi...A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approximate. The a posteriori error estimator which is needed in the adaptive refinement algorithm is proposed. The local evaluation of the least-squares functional serves as a posteriori error estimator. The posteriori errors are effectively estimated. The convergence of the adaptive least-squares mixed finite element method is proved.展开更多
In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinea...In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinear hysteretic behavior of RBs in this paper, which has the advantages of being smooth-varying and physically motivated. Further, based on the results from experimental tests performed by using a particular type of RB (GZN 110) under different excitation scenarios, including white noise and several earthquakes, a new system identification method, referred to as the sequential nonlinear least- square estimation (SNLSE), is introduced to identify the model parameters. It is shown that the proposed simplified Bouc- Wen model is capable of describing the nonlinear hysteretic behavior of RBs, and that the SNLSE approach is very effective in identifying the model parameters of RBs.展开更多
The unknown parameter’s variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now, which didn’t appear in the internal and external referencing documents. Th...The unknown parameter’s variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now, which didn’t appear in the internal and external referencing documents. The unknown parameter’s vari- ance-covariance propagation formula, considering the two-power terms, was concluded used to evaluate the accuracy of unknown parameter estimators in the generalized nonlinear least squares problem. It is a new variance-covariance formula and opens up a new way to evaluate the accuracy when processing data which have the multi-source, multi-dimensional, multi-type, multi-time-state, different accuracy and nonlinearity.展开更多
A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems...A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.展开更多
Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection ope...Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini problem is then reformulated as BIEs and the unknown boundary variables are approximated by the MLS approximations. Accordingly, only a nodal data structure on the boundary of a domain is required. The convergence of the algorithm is proven. Numerical examples are given to show the high convergence rate and high computational efficiency of the presented algorithm.展开更多
Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics...Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics and geosciences, where regularization algorithms are employed to seek optimal solutions. For many problems, even with the use of regularization algorithms it may be impossible to obtain an accurate solution. Riley and Golub suggested an iterative scheme for solving LLS problems. For the early iteration algorithm, it is difficult to improve the well-conditioned perturbed matrix and accelerate the convergence at the same time. Aiming at this problem, self-adaptive iteration algorithm(SAIA) is proposed in this paper for solving severe ill-conditioned LLS problems. The algorithm is different from other popular algorithms proposed in recent references. It avoids matrix inverse by using Cholesky decomposition, and tunes the perturbation parameter according to the rate of residual error decline in the iterative process. Example shows that the algorithm can greatly reduce iteration times, accelerate the convergence,and also greatly enhance the computation accuracy.展开更多
In this article,we consider a discrete right-definite Sturm-Liouville problems with two squared eigenparameter-dependent boundary conditions.By constructing some new Lagrange-type identities and two fundamental functi...In this article,we consider a discrete right-definite Sturm-Liouville problems with two squared eigenparameter-dependent boundary conditions.By constructing some new Lagrange-type identities and two fundamental functions,we obtain not only the existence,the simplicity,and the interlacing properties of the real eigenvalues,but also the oscillation properties,orthogonality of the eigenfunctions,and the expansion theorem.Finally,we also give a computation scheme for computing eigenvalues and eigenfunctions of specific eigenvalue problems.展开更多
We extend the oblique projection method given by Y.Saad to solve the generalized least squares problem. The corresponding oblique projection operator is presented and the convergence theorems are proved. Some necessar...We extend the oblique projection method given by Y.Saad to solve the generalized least squares problem. The corresponding oblique projection operator is presented and the convergence theorems are proved. Some necessary and sufficient conditions for computing the solution or the minimum N-norm solution of the min || A x- b ||M2 have been proposed as well.展开更多
The matrix least squares (LS) problem minx ||AXB^T--T||F is trivial and its solution can be simply formulated in terms of the generalized inverse of A and B. Its generalized problem minx1,x2 ||A1X1B1^T + A2X2...The matrix least squares (LS) problem minx ||AXB^T--T||F is trivial and its solution can be simply formulated in terms of the generalized inverse of A and B. Its generalized problem minx1,x2 ||A1X1B1^T + A2X2B2^T - T||F can also be regarded as the constrained LS problem minx=diag(x1,x2) ||AXB^T -T||F with A = [A1, A2] and B = [B1, B2]. The authors transform T to T such that min x1,x2 ||A1X1B1^T+A2X2B2^T -T||F is equivalent to min x=diag(x1 ,x2) ||AXB^T - T||F whose solutions are included in the solution set of unconstrained problem minx ||AXB^T - T||F. So the general solutions of min x1,x2 ||A1X1B^T + A2X2B2^T -T||F are reconstructed by selecting the parameter matrix in that of minx ||AXB^T - T||F.展开更多
Upon using the denotative theorem of anti-Hermitian generalized Hamiltonian matrices,we solve effectively the least-squares problem min‖AX-B‖over anti-Hermitian generalized Hamiltonian matrices.We derive some necess...Upon using the denotative theorem of anti-Hermitian generalized Hamiltonian matrices,we solve effectively the least-squares problem min‖AX-B‖over anti-Hermitian generalized Hamiltonian matrices.We derive some necessary and sufficient conditions for solvability of the problem and an expression for general solution of the matrix equation AX=B.In addition,we also obtain the expression for the solution of a relevant optimal approximate problem.展开更多
An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any co...An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any combination of discrete velocity and pressure spaces without requiring the Babuska-Brezzi stability condition. Using the general theory of Verfiirth, the posteriori error estimates of the residual type are derived. Finally, numerical tests are presented to illustrate the effectiveness of the method.展开更多
In this paper, we extend the alternate Broyden's method to the multiple version fbi solving lincar leastsquarc systems with multiple right-hand sides. We show that the method possesses property of a finite tcrmina...In this paper, we extend the alternate Broyden's method to the multiple version fbi solving lincar leastsquarc systems with multiple right-hand sides. We show that the method possesses property of a finite tcrmination.Some numerical cxperiments are gi von to inustrate the effectiveness of the method.展开更多
Let P be a set of n?points in two dimensional plane. For each point , we locate an axis- parallel unit square having one particular side passing through p and enclosing the maximum number of points from P. Considering...Let P be a set of n?points in two dimensional plane. For each point , we locate an axis- parallel unit square having one particular side passing through p and enclosing the maximum number of points from P. Considering all points , such n?squares can be reported in O(nlogn)?time. We show that this result can be used to (i) locate m>(2)?axis-parallel unit squares which are pairwise disjoint and they together enclose the maximum number of points from P (if exists) and (ii) find the smallest axis-parallel square enclosing at least k points of P , .展开更多
A structured perturbation analysis of the least squares problem is considered in this paper.The new error bound proves to be sharper than that for general perturbations. We apply the new error bound to study sensitivi...A structured perturbation analysis of the least squares problem is considered in this paper.The new error bound proves to be sharper than that for general perturbations. We apply the new error bound to study sensitivity of changing the knots for curve fitting of interest rate term structure by cubic spline.Numerical experiments are given to illustrate the sharpness of this bound.展开更多
A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoot...A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoothing functional is studied. Finding the optimal solutions of this problem is reduced to solution of the Hammerstein type two-dimensional nonlinear integral equation. The numerical algorithms to find the branching lines and branching-off solutions of this equation are constructed and justified. Numerical examples are presented.展开更多
In this paper, an iterative method is constructed to find the least-squares solutions of generalized Sylvester equation , where is real matrices group, and satisfies different linear constraint. By this iterative meth...In this paper, an iterative method is constructed to find the least-squares solutions of generalized Sylvester equation , where is real matrices group, and satisfies different linear constraint. By this iterative method, for any initial matrix group within a special constrained matrix set, a least squares solution group with satisfying different linear constraint can be obtained within finite iteration steps in the absence of round off errors, and the unique least norm least-squares solution can be obtained by choosing a special kind of initial matrix group. In addition, a minimization property of this iterative method is characterized. Finally, numerical experiments are reported to show the efficiency of the proposed method.展开更多
基金supported by the Key Project of Gansu Provincial National Science Foundation(23JRRA1022)the National Natural Science Foundation of China(12071431)+1 种基金the Fundamental Research Funds for the Central Universities(lzujbky-2021-ey18)the Innovative Groups of Basic Research in Gansu Province(22JR5RA391).
文摘Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted Kato square root problem for L.More precisely,we prove that the square root L^(1/2)satisfies the weighted L^(p)estimates||L^(1/2)(f)||L_(ω)^p(R^(n))≤C||■f||L_(ω)^p(R^(n);R^(n))for any p∈(1,∞)andω∈Ap(ℝ^(n))(the class of Muckenhoupt weights),and that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,2+ε)andω∈Ap(ℝ^(n))∩RH_(2+ε/p),(R^(n))(the class of reverse Hölder weights),whereε∈(0,∞)is a constant depending only on n and the operator L,and where(2+ε/p)'denotes the Hölder conjugate exponent of 2+ε/p.Moreover,for any given q∈(2,∞),we give a sufficient condition to obtain that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,q)andω∈A_(p)(R^(n))∩pRH_(q/p),(R^(n)).As an application,we prove that when the coefficient matrix A that appears in L satisfies the small BMO condition,the Riesz transform∇L^(−1/2)is bounded on L_(ω)^(p)(ℝ^(n))for any given p∈(1,∞)andω∈Ap(ℝ^(n)).Furthermore,applications to the weighted L^(2)-regularity problem with the Dirichlet or the Neumann boundary condition are also given.
文摘Estimation of stochastic demand in physical distribution in general and efficient transport routs management in particular is emerging as a crucial factor in urban planning domain. It is particularly important in some municipalities such as Tehran where a sound demand management calls for a realistic analysis of the routing system. The methodology involved critically investigating a fuzzy least-squares linear regression approach (FLLRs) to estimate the stochastic demands in the vehicle routing problem (VRP) bearing in mind the customer's preferences order. A FLLR method is proposed in solving the VRP with stochastic demands: approximate-distance fuzzy least-squares (ADFL) estimator ADFL estimator is applied to original data taken from a case study. The SSR values of the ADFL estimator and real demand are obtained and then compared to SSR values of the nominal demand and real demand. Empirical results showed that the proposed method can be viable in solving problems under circumstances of having vague and imprecise performance ratings. The results further proved that application of the ADFL was realistic and efficient estimator to face the sto- chastic demand challenges in vehicle routing system management and solve relevant problems.
文摘A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approximate. The a posteriori error estimator which is needed in the adaptive refinement algorithm is proposed. The local evaluation of the least-squares functional serves as a posteriori error estimator. The posteriori errors are effectively estimated. The convergence of the adaptive least-squares mixed finite element method is proved.
基金National Natural Science Foundation of China Under Grant No.10572058the Science Foundation of Aeronautics of China Under Grant No.2008ZA52012
文摘In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinear hysteretic behavior of RBs in this paper, which has the advantages of being smooth-varying and physically motivated. Further, based on the results from experimental tests performed by using a particular type of RB (GZN 110) under different excitation scenarios, including white noise and several earthquakes, a new system identification method, referred to as the sequential nonlinear least- square estimation (SNLSE), is introduced to identify the model parameters. It is shown that the proposed simplified Bouc- Wen model is capable of describing the nonlinear hysteretic behavior of RBs, and that the SNLSE approach is very effective in identifying the model parameters of RBs.
基金Supported by the National Natural Science Foundation of China (40174003)
文摘The unknown parameter’s variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now, which didn’t appear in the internal and external referencing documents. The unknown parameter’s vari- ance-covariance propagation formula, considering the two-power terms, was concluded used to evaluate the accuracy of unknown parameter estimators in the generalized nonlinear least squares problem. It is a new variance-covariance formula and opens up a new way to evaluate the accuracy when processing data which have the multi-source, multi-dimensional, multi-type, multi-time-state, different accuracy and nonlinearity.
基金supported by the National Natural Science Foundation of China (No. 11071033)the Fundamental Research Funds for the Central Universities (No. 090405013)
文摘A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.
基金supported by the National Natural Science Foundation of China(Grant No.11101454)the Natural Science Foundation of Chongqing CSTC,China(Grant No.cstc2014jcyjA00005)the Program of Innovation Team Project in University of Chongqing City,China(Grant No.KJTD201308)
文摘Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini problem is then reformulated as BIEs and the unknown boundary variables are approximated by the MLS approximations. Accordingly, only a nodal data structure on the boundary of a domain is required. The convergence of the algorithm is proven. Numerical examples are given to show the high convergence rate and high computational efficiency of the presented algorithm.
基金supported by Open Fund of Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan Province(Changsha University of Science&Technology,kfj150602)Hunan Province Science and Technology Program Funded Projects,China(2015NK3035)+1 种基金the Land and Resources Department Scientific Research Project of Hunan Province,China(2013-27)the Education Department Scientific Research Project of Hunan Province,China(13C1011)
文摘Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics and geosciences, where regularization algorithms are employed to seek optimal solutions. For many problems, even with the use of regularization algorithms it may be impossible to obtain an accurate solution. Riley and Golub suggested an iterative scheme for solving LLS problems. For the early iteration algorithm, it is difficult to improve the well-conditioned perturbed matrix and accelerate the convergence at the same time. Aiming at this problem, self-adaptive iteration algorithm(SAIA) is proposed in this paper for solving severe ill-conditioned LLS problems. The algorithm is different from other popular algorithms proposed in recent references. It avoids matrix inverse by using Cholesky decomposition, and tunes the perturbation parameter according to the rate of residual error decline in the iterative process. Example shows that the algorithm can greatly reduce iteration times, accelerate the convergence,and also greatly enhance the computation accuracy.
基金The authors are supported by National Natural Sciences Foundation of China(11961060,11671322)the Key Project of Natural Sciences Foundation of Gansu Province(18JR3RA084).
文摘In this article,we consider a discrete right-definite Sturm-Liouville problems with two squared eigenparameter-dependent boundary conditions.By constructing some new Lagrange-type identities and two fundamental functions,we obtain not only the existence,the simplicity,and the interlacing properties of the real eigenvalues,but also the oscillation properties,orthogonality of the eigenfunctions,and the expansion theorem.Finally,we also give a computation scheme for computing eigenvalues and eigenfunctions of specific eigenvalue problems.
基金Supported by the National Natural Science Foundation of China
文摘We extend the oblique projection method given by Y.Saad to solve the generalized least squares problem. The corresponding oblique projection operator is presented and the convergence theorems are proved. Some necessary and sufficient conditions for computing the solution or the minimum N-norm solution of the min || A x- b ||M2 have been proposed as well.
基金Supported by the National Natural Science Foundation of China (10231060), the Special Research Found of Doctoral Program of Higher Education of China(200d0319003 ), the Research Project of Xuzhou Institute of Technology( XKY200622).
基金supported in part by the Social Science Foundation of Ministry of Education(07JJD790154)the National Science Foundation for Young Scholars (60803076)+2 种基金the Natural Science Foundation of Zhejiang Province (Y6090211)Foundation of Education Department of Zhejiang Province (20070590)the Young Talent Foundation of Zhejiang Gongshang University
文摘The matrix least squares (LS) problem minx ||AXB^T--T||F is trivial and its solution can be simply formulated in terms of the generalized inverse of A and B. Its generalized problem minx1,x2 ||A1X1B1^T + A2X2B2^T - T||F can also be regarded as the constrained LS problem minx=diag(x1,x2) ||AXB^T -T||F with A = [A1, A2] and B = [B1, B2]. The authors transform T to T such that min x1,x2 ||A1X1B1^T+A2X2B2^T -T||F is equivalent to min x=diag(x1 ,x2) ||AXB^T - T||F whose solutions are included in the solution set of unconstrained problem minx ||AXB^T - T||F. So the general solutions of min x1,x2 ||A1X1B^T + A2X2B2^T -T||F are reconstructed by selecting the parameter matrix in that of minx ||AXB^T - T||F.
基金This research was supported by the NSF of China under grant number 10571047.
文摘Upon using the denotative theorem of anti-Hermitian generalized Hamiltonian matrices,we solve effectively the least-squares problem min‖AX-B‖over anti-Hermitian generalized Hamiltonian matrices.We derive some necessary and sufficient conditions for solvability of the problem and an expression for general solution of the matrix equation AX=B.In addition,we also obtain the expression for the solution of a relevant optimal approximate problem.
基金supported by the National Natural Science Foundation of China(Nos.10871156 and 11171269)the Fund of Xi'an Jiaotong University(No.2009xjtujc30)
文摘An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any combination of discrete velocity and pressure spaces without requiring the Babuska-Brezzi stability condition. Using the general theory of Verfiirth, the posteriori error estimates of the residual type are derived. Finally, numerical tests are presented to illustrate the effectiveness of the method.
文摘In this paper, we extend the alternate Broyden's method to the multiple version fbi solving lincar leastsquarc systems with multiple right-hand sides. We show that the method possesses property of a finite tcrmination.Some numerical cxperiments are gi von to inustrate the effectiveness of the method.
文摘Let P be a set of n?points in two dimensional plane. For each point , we locate an axis- parallel unit square having one particular side passing through p and enclosing the maximum number of points from P. Considering all points , such n?squares can be reported in O(nlogn)?time. We show that this result can be used to (i) locate m>(2)?axis-parallel unit squares which are pairwise disjoint and they together enclose the maximum number of points from P (if exists) and (ii) find the smallest axis-parallel square enclosing at least k points of P , .
基金Funds for Major State The work of the second author is partly supported by the Special Basic Research Projects (2005CB321700)the National Science Foundation of China under grant No. 10571031The work of the third author is partly supported by the National Science Foundation of China under grant No. 10571031.
文摘A structured perturbation analysis of the least squares problem is considered in this paper.The new error bound proves to be sharper than that for general perturbations. We apply the new error bound to study sensitivity of changing the knots for curve fitting of interest rate term structure by cubic spline.Numerical experiments are given to illustrate the sharpness of this bound.
文摘A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoothing functional is studied. Finding the optimal solutions of this problem is reduced to solution of the Hammerstein type two-dimensional nonlinear integral equation. The numerical algorithms to find the branching lines and branching-off solutions of this equation are constructed and justified. Numerical examples are presented.
文摘In this paper, an iterative method is constructed to find the least-squares solutions of generalized Sylvester equation , where is real matrices group, and satisfies different linear constraint. By this iterative method, for any initial matrix group within a special constrained matrix set, a least squares solution group with satisfying different linear constraint can be obtained within finite iteration steps in the absence of round off errors, and the unique least norm least-squares solution can be obtained by choosing a special kind of initial matrix group. In addition, a minimization property of this iterative method is characterized. Finally, numerical experiments are reported to show the efficiency of the proposed method.