The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features becau...The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features because the quality of modeling greatly depends on therepresentation of features. Some fitting techniques of natural quadric surfaces with least-squaresmethod are described. And these techniques can be directly used to extract quadric surfaces featuresduring the process of segmentation for point cloud.展开更多
An intuitive method for circle fitting is proposed. Assuming an approximate circle(CA,n) for the fitting of some scattered points, it can be imagined that every point would apply a force to CA,n, which all together fo...An intuitive method for circle fitting is proposed. Assuming an approximate circle(CA,n) for the fitting of some scattered points, it can be imagined that every point would apply a force to CA,n, which all together form an overall effect that "draws" CA,n towards best fitting to the group of points. The basic element of the force is called circular attracting factor(CAF) which is defined as a real scalar in a radial direction of CA,n. An iterative algorithm based on this idea is proposed, and the convergence and accuracy are analyzed. The algorithm converges uniformly which is proved by the analysis of Lyapunov function, and the accuracy of the algorithm is in accord with that of geometric least squares of circle fitting. The algorithm is adopted to circle detection in grayscale images, in which the transferring to binary images is not required, and thus the algorithm is less sensitive to lightening and background noise. The main point for the adaption is the calculation of CAF which is extended in radial directions of CA,n for the whole image. All pixels would apply forces to CA,n, and the overall effect of forces would be equivalent to a force from the centroid of pixels to CA,n. The forces from would-be edge pixels would overweigh that from noisy pixels, so the following approximate circle would be of better fitting. To reduce the amount of calculation, pixels are only used in an annular area including the boundary of CA,n just in between for the calculation of CAF. Examples are given, showing the process of circle fitting of scattered points around a circle from an initial assuming circle, comparing the fitting results for scattered points from some related literature, applying the method proposed for circular edge detection in grayscale images with noise, and/or with only partial arc of a circle, and for circle detection in BGA inspection.展开更多
Data fitting is an extensively employed modeling tool in geometric design. With the advent of the big data era, the data sets to be fitted are made larger and larger, leading to more and more least-squares fitting sys...Data fitting is an extensively employed modeling tool in geometric design. With the advent of the big data era, the data sets to be fitted are made larger and larger, leading to more and more least-squares fitting systems with singular coefficient matrices. LSPIA (least-squares progressive iterative approximation) is an efficient iterative method for the least-squares fitting. However, the convergence of LSPIA for the singular least-squares fitting systems remains as an open problem. In this paper, the authors showed that LSPIA for the singular least-squares fitting systems is convergent. Moreover, in a special case, LSPIA converges to the Moore-Penrose (M-P) pseudo-inverse solution to the least- squares fitting result of the data set. This property makes LSPIA, an iterative method with clear geometric meanings, robust in geometric modeling applications. In addition, the authors discussed some implementation detail of LSPIA, and presented an example to validate the convergence of LSPIA for the singular least-squares fitting systems.展开更多
This paper presents a novel approach for least-squares fitting of complex surface to measured 3D coordinate points by adjusting its location and/or shape. For a point expressed in the machine reference frame and a def...This paper presents a novel approach for least-squares fitting of complex surface to measured 3D coordinate points by adjusting its location and/or shape. For a point expressed in the machine reference frame and a deformable smooth surface represented in its own model frame, a signed point-to-surface distance function is defined, and its increment with respect to the differential motion and differential deformation of the surface is derived. On this basis, localization, surface reconstruction and geometric variation characterization are formulated as a unified nonlinear least-squares problem defined on the product space SE(3)×Km. By using Levenberg-Marquardt method, a sequential approximation surface fitting algorithm is developed. It has the advantages of implementational simplicity, computational efficiency and robustness. Applications confirm the validity of the proposed approach.展开更多
Despite the wide availability and usage of Gatan’s DigitalMicrograph software in the electron microscopy community for image recording and analysis, nonlinear least-squares fitting in DigitalMicrograph is less straig...Despite the wide availability and usage of Gatan’s DigitalMicrograph software in the electron microscopy community for image recording and analysis, nonlinear least-squares fitting in DigitalMicrograph is less straightforward. This work presents a ready-to-use tool, the DMPFIT software package, written in DigitalMicrograph script and C++ language, for nonlinear least-squares fitting of the intensity distribution of atomic columns in atomic-resolution transmission electron microscopy (TEM) images with a general two-dimensional (2D) Gaussian model. Applications of the DMPFIT software are demonstrated both in atomic-resolution conventional coherent TEM (CTEM) images recorded by the negative spherical aberration imaging technique and in high angle annular dark field (HAADF) scanning TEM (STEM) images. The implemented peak-finding algorithm based on the periodicity of 2D lattices enables reliable and convenient atomic-scale metrology as well as intuitive presentation of the resolved atomic structures.展开更多
With the development of computational power, there has been an increased focus on data-fitting related seismic inversion techniques for high fidelity seismic velocity model and image, such as full-waveform inversion a...With the development of computational power, there has been an increased focus on data-fitting related seismic inversion techniques for high fidelity seismic velocity model and image, such as full-waveform inversion and least squares migration. However, though more advanced than conventional methods, these data fitting methods can be very expensive in terms of computational cost. Recently, various techniques to optimize these data-fitting seismic inversion problems have been implemented to cater for the industrial need for much improved efficiency. In this study, we propose a general stochastic conjugate gradient method for these data-fitting related inverse problems. We first prescribe the basic theory of our method and then give synthetic examples. Our numerical experiments illustrate the potential of this method for large-size seismic inversion application.展开更多
Baseline offset in digital strong-motion acceleration record and initial velocity can produce unrealistic results for ground velocity and displacement derived from the acceleration by integration. A new method is prop...Baseline offset in digital strong-motion acceleration record and initial velocity can produce unrealistic results for ground velocity and displacement derived from the acceleration by integration. A new method is proposed for the baseline correction and initial velocity calculation. It is based on linear least-squares fitting of the pre-event portion of velocity derived from the uncorrected acceleration data. Compared with the conventional method,which is based on removing the mean values of the pre-event portions of the acceleration and velocity traces,this method has clearer physical meaning and better stability.展开更多
This paper presents the isogeometric least-squares collocatio method,which determines the numerical solution by making the approximate differential operator fit the real differential operator in a least-squares sense....This paper presents the isogeometric least-squares collocatio method,which determines the numerical solution by making the approximate differential operator fit the real differential operator in a least-squares sense.The number of collocation points employed in IGA-L can be larger than that of the unknowns.Theoretical analysis and numerical examples presented in this paper show the superiority of IGA-L over state-of-the-art collocation methods.First,a small increase in the number of collocation points in IGA-L leads to a large improvement in the accuracy of its numerical solution.Second,IGA-L method is more flexible and more stable,because the number of collocation points in IGA-L is variable.Third,IGA-L is convergent in some cases of singular parameterization.Moreover,the consistency and convergence analysis are also developed in this paper.展开更多
This paper focuses on the high intensity filaments (dye patches) embedded in dye plumes in a wall-bounded shear flow, to investigate the shear effect on the dye patch distribution. Motivated by the widely concerned in...This paper focuses on the high intensity filaments (dye patches) embedded in dye plumes in a wall-bounded shear flow, to investigate the shear effect on the dye patch distribution. Motivated by the widely concerned inverse estimation of the source location, we try extracting useful information to know the source location from down-stream dye patches. Accordingly, we changed the dye injection location at different distances from the wall and made observations at different downstream (diffusion) distances from the source. The orientation angle and roundness of dye patches were concerned to examine the shear effect and dye patch characteristics. To capture the dye plume images, a planar laser induced fluorescence (PLIF) technique was used. The orientation and roundness of each dye patch were calculated by least-square fitting. The statistics of both the orientation angle and the roundness were compared with those in homogeneous turbulent cases to reveal the shear effect. Different from uniformly-orientated dye patches in the homogeneous flow, larger occurrence probabilities with positive orientation angles of dye patches are observed in wall-bounded shear flow, in particular, when the injection location is near the wall. As with information extraction for the inverse estimation of source location, it is found that the orientation distribution of dye patches is independent of the diffusion distance, but related with the injection location from the wall. While for the homogeneous flow cases, a strong dependence on the diffusion distance is observed in the orientation distribution profiles. As for the roundness, similar aspects are found regarding the dependencies on the injection location in shear flow and on diffusion distance in homogeneous flow.展开更多
A semi-empirical detector response function (DRF) model of Si (PIN) detector is proposed to fit element Kα and Kβ X-ray spectra, which is based on statistical distribution analytic (SDA) method. The model for ...A semi-empirical detector response function (DRF) model of Si (PIN) detector is proposed to fit element Kα and Kβ X-ray spectra, which is based on statistical distribution analytic (SDA) method. The model for each single peak contains a step function, a Gaussian function and an exponential tail function. Parameters in the model are obtained by weighted nonlinear least-squares fitting method. In the application, six kinds of elements' characteristic X-ray spectra are obtained by Si (PIN) detector, and fitted out by the established DRF model. Reduced chi-square values are at the interval of 1.11-1.25. Other applications of the method are also discussed.展开更多
There has been a global attack of A/H1N1 virus in 2009, which widely affected the world's normal stability and economic development. Since the emergence of the first diagnosed A/H1N1 influenza infected person in 11 M...There has been a global attack of A/H1N1 virus in 2009, which widely affected the world's normal stability and economic development. Since the emergence of the first diagnosed A/H1N1 influenza infected person in 11 May 2009 in China, very strict policy including quarantine and isolation measures were widely implemented to control the spread of this disease before the vaccine appeared. We propose a compartmental model that mimics the infection process of A/H1N1 under control strategies taken in China's Mainland. Apart from theoretical analysis, using the statistic data of Shaanxi Province, we estimated the unknown epidemiological parameters of this disease in Shaanxi via least-squares fitting method. The estimated control reproductive number of H1N1 for its first peak was Rc1 = 2.555 (95% CI: 2.362 2.748) and that for the second peak was Rc2 = 1.886 (95% CI: 1.765-2.001). Our findings in this paper suggest that neither quarantine nor isolation measures could be relaxed, and the implementation of these interventions can reduce the pandemic outbreak of A/H1N1 pandemic significantly.展开更多
基金This project is supported by Research Foundation for Doctoral Program of Higher Education, China (No.98033532)
文摘The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features because the quality of modeling greatly depends on therepresentation of features. Some fitting techniques of natural quadric surfaces with least-squaresmethod are described. And these techniques can be directly used to extract quadric surfaces featuresduring the process of segmentation for point cloud.
基金Project(2013CB035504) supported by the National Basic Research Program of ChinaProject(2012zzts078) supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(2009ZX02038) supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China
文摘An intuitive method for circle fitting is proposed. Assuming an approximate circle(CA,n) for the fitting of some scattered points, it can be imagined that every point would apply a force to CA,n, which all together form an overall effect that "draws" CA,n towards best fitting to the group of points. The basic element of the force is called circular attracting factor(CAF) which is defined as a real scalar in a radial direction of CA,n. An iterative algorithm based on this idea is proposed, and the convergence and accuracy are analyzed. The algorithm converges uniformly which is proved by the analysis of Lyapunov function, and the accuracy of the algorithm is in accord with that of geometric least squares of circle fitting. The algorithm is adopted to circle detection in grayscale images, in which the transferring to binary images is not required, and thus the algorithm is less sensitive to lightening and background noise. The main point for the adaption is the calculation of CAF which is extended in radial directions of CA,n for the whole image. All pixels would apply forces to CA,n, and the overall effect of forces would be equivalent to a force from the centroid of pixels to CA,n. The forces from would-be edge pixels would overweigh that from noisy pixels, so the following approximate circle would be of better fitting. To reduce the amount of calculation, pixels are only used in an annular area including the boundary of CA,n just in between for the calculation of CAF. Examples are given, showing the process of circle fitting of scattered points around a circle from an initial assuming circle, comparing the fitting results for scattered points from some related literature, applying the method proposed for circular edge detection in grayscale images with noise, and/or with only partial arc of a circle, and for circle detection in BGA inspection.
基金supported by the Natural Science Foundation of China under Grant No.61379072
文摘Data fitting is an extensively employed modeling tool in geometric design. With the advent of the big data era, the data sets to be fitted are made larger and larger, leading to more and more least-squares fitting systems with singular coefficient matrices. LSPIA (least-squares progressive iterative approximation) is an efficient iterative method for the least-squares fitting. However, the convergence of LSPIA for the singular least-squares fitting systems remains as an open problem. In this paper, the authors showed that LSPIA for the singular least-squares fitting systems is convergent. Moreover, in a special case, LSPIA converges to the Moore-Penrose (M-P) pseudo-inverse solution to the least- squares fitting result of the data set. This property makes LSPIA, an iterative method with clear geometric meanings, robust in geometric modeling applications. In addition, the authors discussed some implementation detail of LSPIA, and presented an example to validate the convergence of LSPIA for the singular least-squares fitting systems.
基金This work was supported by the National Natural Science Foundation of China(Grant No.50205018)a grant from the State Key Laboratory for Manufacturing Systems Engineering.
文摘This paper presents a novel approach for least-squares fitting of complex surface to measured 3D coordinate points by adjusting its location and/or shape. For a point expressed in the machine reference frame and a deformable smooth surface represented in its own model frame, a signed point-to-surface distance function is defined, and its increment with respect to the differential motion and differential deformation of the surface is derived. On this basis, localization, surface reconstruction and geometric variation characterization are formulated as a unified nonlinear least-squares problem defined on the product space SE(3)×Km. By using Levenberg-Marquardt method, a sequential approximation surface fitting algorithm is developed. It has the advantages of implementational simplicity, computational efficiency and robustness. Applications confirm the validity of the proposed approach.
基金Financial support from the German Research Foundation(SFB917)is acknowledgedOpen Access funding enabled and organized by Projekt DEAL.
文摘Despite the wide availability and usage of Gatan’s DigitalMicrograph software in the electron microscopy community for image recording and analysis, nonlinear least-squares fitting in DigitalMicrograph is less straightforward. This work presents a ready-to-use tool, the DMPFIT software package, written in DigitalMicrograph script and C++ language, for nonlinear least-squares fitting of the intensity distribution of atomic columns in atomic-resolution transmission electron microscopy (TEM) images with a general two-dimensional (2D) Gaussian model. Applications of the DMPFIT software are demonstrated both in atomic-resolution conventional coherent TEM (CTEM) images recorded by the negative spherical aberration imaging technique and in high angle annular dark field (HAADF) scanning TEM (STEM) images. The implemented peak-finding algorithm based on the periodicity of 2D lattices enables reliable and convenient atomic-scale metrology as well as intuitive presentation of the resolved atomic structures.
基金partially supported by the National Natural Science Foundation of China (No.41230318)
文摘With the development of computational power, there has been an increased focus on data-fitting related seismic inversion techniques for high fidelity seismic velocity model and image, such as full-waveform inversion and least squares migration. However, though more advanced than conventional methods, these data fitting methods can be very expensive in terms of computational cost. Recently, various techniques to optimize these data-fitting seismic inversion problems have been implemented to cater for the industrial need for much improved efficiency. In this study, we propose a general stochastic conjugate gradient method for these data-fitting related inverse problems. We first prescribe the basic theory of our method and then give synthetic examples. Our numerical experiments illustrate the potential of this method for large-size seismic inversion application.
基金supported by the National Natural Science Foundation of China( 41004020)the Director Foundation of Institute of Seismology,CEA(IS200926044)
文摘Baseline offset in digital strong-motion acceleration record and initial velocity can produce unrealistic results for ground velocity and displacement derived from the acceleration by integration. A new method is proposed for the baseline correction and initial velocity calculation. It is based on linear least-squares fitting of the pre-event portion of velocity derived from the uncorrected acceleration data. Compared with the conventional method,which is based on removing the mean values of the pre-event portions of the acceleration and velocity traces,this method has clearer physical meaning and better stability.
基金supported by the National Natural Science Foundation of China under Grant No.61872316the Natural Science Foundation of Zhejiang Province under Grant No.LY19F020004。
文摘This paper presents the isogeometric least-squares collocatio method,which determines the numerical solution by making the approximate differential operator fit the real differential operator in a least-squares sense.The number of collocation points employed in IGA-L can be larger than that of the unknowns.Theoretical analysis and numerical examples presented in this paper show the superiority of IGA-L over state-of-the-art collocation methods.First,a small increase in the number of collocation points in IGA-L leads to a large improvement in the accuracy of its numerical solution.Second,IGA-L method is more flexible and more stable,because the number of collocation points in IGA-L is variable.Third,IGA-L is convergent in some cases of singular parameterization.Moreover,the consistency and convergence analysis are also developed in this paper.
文摘This paper focuses on the high intensity filaments (dye patches) embedded in dye plumes in a wall-bounded shear flow, to investigate the shear effect on the dye patch distribution. Motivated by the widely concerned inverse estimation of the source location, we try extracting useful information to know the source location from down-stream dye patches. Accordingly, we changed the dye injection location at different distances from the wall and made observations at different downstream (diffusion) distances from the source. The orientation angle and roundness of dye patches were concerned to examine the shear effect and dye patch characteristics. To capture the dye plume images, a planar laser induced fluorescence (PLIF) technique was used. The orientation and roundness of each dye patch were calculated by least-square fitting. The statistics of both the orientation angle and the roundness were compared with those in homogeneous turbulent cases to reveal the shear effect. Different from uniformly-orientated dye patches in the homogeneous flow, larger occurrence probabilities with positive orientation angles of dye patches are observed in wall-bounded shear flow, in particular, when the injection location is near the wall. As with information extraction for the inverse estimation of source location, it is found that the orientation distribution of dye patches is independent of the diffusion distance, but related with the injection location from the wall. While for the homogeneous flow cases, a strong dependence on the diffusion distance is observed in the orientation distribution profiles. As for the roundness, similar aspects are found regarding the dependencies on the injection location in shear flow and on diffusion distance in homogeneous flow.
基金Supported by National Natural Science Foundation of China(40974065, 41025015)Scientific and Technological Innovative Team in Sichuan Province(2011JTD0013)"863" Program of China(2012AA063501)
文摘A semi-empirical detector response function (DRF) model of Si (PIN) detector is proposed to fit element Kα and Kβ X-ray spectra, which is based on statistical distribution analytic (SDA) method. The model for each single peak contains a step function, a Gaussian function and an exponential tail function. Parameters in the model are obtained by weighted nonlinear least-squares fitting method. In the application, six kinds of elements' characteristic X-ray spectra are obtained by Si (PIN) detector, and fitted out by the established DRF model. Reduced chi-square values are at the interval of 1.11-1.25. Other applications of the method are also discussed.
文摘There has been a global attack of A/H1N1 virus in 2009, which widely affected the world's normal stability and economic development. Since the emergence of the first diagnosed A/H1N1 influenza infected person in 11 May 2009 in China, very strict policy including quarantine and isolation measures were widely implemented to control the spread of this disease before the vaccine appeared. We propose a compartmental model that mimics the infection process of A/H1N1 under control strategies taken in China's Mainland. Apart from theoretical analysis, using the statistic data of Shaanxi Province, we estimated the unknown epidemiological parameters of this disease in Shaanxi via least-squares fitting method. The estimated control reproductive number of H1N1 for its first peak was Rc1 = 2.555 (95% CI: 2.362 2.748) and that for the second peak was Rc2 = 1.886 (95% CI: 1.765-2.001). Our findings in this paper suggest that neither quarantine nor isolation measures could be relaxed, and the implementation of these interventions can reduce the pandemic outbreak of A/H1N1 pandemic significantly.