The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features becau...The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features because the quality of modeling greatly depends on therepresentation of features. Some fitting techniques of natural quadric surfaces with least-squaresmethod are described. And these techniques can be directly used to extract quadric surfaces featuresduring the process of segmentation for point cloud.展开更多
Adopted the distribution feedback type (DFB) laser to measure the coal mine gas methane, according to the methane located 1.6 μm nearby 2v3 with a R9 direct absorption spectrum, attraction wire intensity of each li...Adopted the distribution feedback type (DFB) laser to measure the coal mine gas methane, according to the methane located 1.6 μm nearby 2v3 with a R9 direct absorption spectrum, attraction wire intensity of each line was calculated through the multi-line Voigt fitting. The experimental result indicates that in the obtained four attraction recover of wire, the maximum deviation is 2.7%, and the minimum deviation is 0.02%, other results are all in experimental error scope. This research method may apply in the spectrum survey methane gas density, it has characteristics including high precision, strong selectivity, fast response and so on.展开更多
Confidence bands in a Normal Q-Q Plot allow us to detect non-normality of a data set rigorously, and in such a way that the conclusion does not depend on the subjectivity of the observer of the graph. In the construct...Confidence bands in a Normal Q-Q Plot allow us to detect non-normality of a data set rigorously, and in such a way that the conclusion does not depend on the subjectivity of the observer of the graph. In the construction of the graph, it is usual to fit a straight line to the plotted points, which serves both to check the hypothesis of normality (linear configuration of the plotted points) and to produce estimates of the parameters of the distribution. We can opt for dif-ferent types of lines. In this paper, we study the influence of five types of fitted straight lines in a Normal Q-Q Plot used for construction the confidence bands based on the exact distribution of the order statistics.展开更多
For the rapid calibration of multi-line structured light system,a method based on Plücker line was proposed.Most of the conventional line-structured light calibration methods extract the feature points and transf...For the rapid calibration of multi-line structured light system,a method based on Plücker line was proposed.Most of the conventional line-structured light calibration methods extract the feature points and transform the coordinates of points to obtain the plane equation.However,a large number of points lead to complicated operation which is not suitable for the application scenarios of multi-line structured light.To solve this issue,a new calibration method was proposed that applied the form of Plücker matrix throughout the whole calibration process,instead of using the point characteristics directly.The advantage of this method is that the light plane equation can be obtained quickly and accurately in the camera coordinate frame.Correspondingly a planar target particularly for calibrating multi-line structured light was also designed.The regular lines were transformed into Plücker lines by extending the two-dimensional image plane and defining a new image space.To transform the coordinate frame of Plücker lines,the perspective projection mathematical model was re-expressed based on the Plücker matrix.According to the properties of the line and plane in the Plücker space,a linear matrix equation was efficiently constructed by combining the Plücker matrices of several coplanar lines so that the line-structured light plane equation could be furtherly solved.The experiments performed validate the proposed method and demonstrate the significant improvement in the calibration accuracy,when the test distance is 1.8 m,the root mean square(RMS)error of the three-dimensional point is within 0.08 mm.展开更多
For absorption linewidth inversion with wavelength modulation spectroscopy(WMS), an optimized WMS spectral line fitting method was demonstrated to infer absorption linewidth effectively, and the analytical expressio...For absorption linewidth inversion with wavelength modulation spectroscopy(WMS), an optimized WMS spectral line fitting method was demonstrated to infer absorption linewidth effectively, and the analytical expressions for relationships between Lorentzian linewidth and the separations of first harmonic peak-to-valley and second harmonic zero-crossing were deduced. The transition of CO_2 centered at 4991.25 cm^(-1) was used to verify the optimized spectral fitting method and the analytical expressions. Results showed that the optimized spectra fitting method was able to infer absorption accurately and compute more than 10 times faster than the commonly used numerical fitting procedure. The second harmonic zero-crossing separation method calculated an even 6 orders faster than the spectra fitting without losing any accuracy for Lorentzian dominated cases. Additionally, linewidth calculated through second harmonic zero-crossing was preferred for much smaller error than the first harmonic peak-to-valley separation method. The presented analytical expressions can also be used in on-line optical sensing applications, electron paramagnetic resonance, and further theoretical characterization of absorption lineshape.展开更多
Baseline offset in digital strong-motion acceleration record and initial velocity can produce unrealistic results for ground velocity and displacement derived from the acceleration by integration. A new method is prop...Baseline offset in digital strong-motion acceleration record and initial velocity can produce unrealistic results for ground velocity and displacement derived from the acceleration by integration. A new method is proposed for the baseline correction and initial velocity calculation. It is based on linear least-squares fitting of the pre-event portion of velocity derived from the uncorrected acceleration data. Compared with the conventional method,which is based on removing the mean values of the pre-event portions of the acceleration and velocity traces,this method has clearer physical meaning and better stability.展开更多
Despite the wide availability and usage of Gatan’s DigitalMicrograph software in the electron microscopy community for image recording and analysis, nonlinear least-squares fitting in DigitalMicrograph is less straig...Despite the wide availability and usage of Gatan’s DigitalMicrograph software in the electron microscopy community for image recording and analysis, nonlinear least-squares fitting in DigitalMicrograph is less straightforward. This work presents a ready-to-use tool, the DMPFIT software package, written in DigitalMicrograph script and C++ language, for nonlinear least-squares fitting of the intensity distribution of atomic columns in atomic-resolution transmission electron microscopy (TEM) images with a general two-dimensional (2D) Gaussian model. Applications of the DMPFIT software are demonstrated both in atomic-resolution conventional coherent TEM (CTEM) images recorded by the negative spherical aberration imaging technique and in high angle annular dark field (HAADF) scanning TEM (STEM) images. The implemented peak-finding algorithm based on the periodicity of 2D lattices enables reliable and convenient atomic-scale metrology as well as intuitive presentation of the resolved atomic structures.展开更多
The paper's aim is how to forecast data with variations involving at times series data to get the best forecasting model. When researchers are going to forecast data with variations involving at times series data (i...The paper's aim is how to forecast data with variations involving at times series data to get the best forecasting model. When researchers are going to forecast data with variations involving at times series data (i.e., secular trends, cyclical variations, seasonal effects, and stochastic variations), they believe the best forecasting model is the one which realistically considers the underlying causal factors in a situational relationship and therefore has the best "track records" in generating data. Paper's models can be adjusted for variations in related a time series which processes a great deal of randomness, to improve the accuracy of the financial forecasts. Because of Na'fve forecasting models are based on an extrapolation of past values for future. These models may be adjusted for seasonal, secular, and cyclical trends in related data. When a data series processes a great deal of randomness, smoothing techniques, such as moving averages and exponential smoothing, may improve the accuracy of the financial forecasts. But neither Na'fve models nor smoothing techniques are capable of identifying major future changes in the direction of a situational data series. Hereby, nonlinear techniques, like direct and sequential search approaches, overcome those shortcomings can be used. The methodology which we have used is based on inferential analysis. To build the models to identify the major future changes in the direction of a situational data series, a comparative model building is applied. Hereby, the paper suggests using some of the nonlinear techniques, like direct and sequential search approaches, to reduce the technical shortcomings. The final result of the paper is to manipulate, to prepare, and to integrate heuristic non-linear searching methods to serve calculating adjusted factors to produce the best forecast data.展开更多
基金This project is supported by Research Foundation for Doctoral Program of Higher Education, China (No.98033532)
文摘The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features because the quality of modeling greatly depends on therepresentation of features. Some fitting techniques of natural quadric surfaces with least-squaresmethod are described. And these techniques can be directly used to extract quadric surfaces featuresduring the process of segmentation for point cloud.
基金the National Natural Science Foundation of China(50574005)Natural Science Foundation of Education Department of Anhui,China(2005KJ081)
文摘Adopted the distribution feedback type (DFB) laser to measure the coal mine gas methane, according to the methane located 1.6 μm nearby 2v3 with a R9 direct absorption spectrum, attraction wire intensity of each line was calculated through the multi-line Voigt fitting. The experimental result indicates that in the obtained four attraction recover of wire, the maximum deviation is 2.7%, and the minimum deviation is 0.02%, other results are all in experimental error scope. This research method may apply in the spectrum survey methane gas density, it has characteristics including high precision, strong selectivity, fast response and so on.
文摘Confidence bands in a Normal Q-Q Plot allow us to detect non-normality of a data set rigorously, and in such a way that the conclusion does not depend on the subjectivity of the observer of the graph. In the construction of the graph, it is usual to fit a straight line to the plotted points, which serves both to check the hypothesis of normality (linear configuration of the plotted points) and to produce estimates of the parameters of the distribution. We can opt for dif-ferent types of lines. In this paper, we study the influence of five types of fitted straight lines in a Normal Q-Q Plot used for construction the confidence bands based on the exact distribution of the order statistics.
基金National Natural Science Foundation of China(No.51575388)。
文摘For the rapid calibration of multi-line structured light system,a method based on Plücker line was proposed.Most of the conventional line-structured light calibration methods extract the feature points and transform the coordinates of points to obtain the plane equation.However,a large number of points lead to complicated operation which is not suitable for the application scenarios of multi-line structured light.To solve this issue,a new calibration method was proposed that applied the form of Plücker matrix throughout the whole calibration process,instead of using the point characteristics directly.The advantage of this method is that the light plane equation can be obtained quickly and accurately in the camera coordinate frame.Correspondingly a planar target particularly for calibrating multi-line structured light was also designed.The regular lines were transformed into Plücker lines by extending the two-dimensional image plane and defining a new image space.To transform the coordinate frame of Plücker lines,the perspective projection mathematical model was re-expressed based on the Plücker matrix.According to the properties of the line and plane in the Plücker space,a linear matrix equation was efficiently constructed by combining the Plücker matrices of several coplanar lines so that the line-structured light plane equation could be furtherly solved.The experiments performed validate the proposed method and demonstrate the significant improvement in the calibration accuracy,when the test distance is 1.8 m,the root mean square(RMS)error of the three-dimensional point is within 0.08 mm.
基金Project supported by the National Natural Science Foundation of China(Grant No.61505142)the Tianjin Natural Science Foundation(Grant No.16JCQNJC02100)
文摘For absorption linewidth inversion with wavelength modulation spectroscopy(WMS), an optimized WMS spectral line fitting method was demonstrated to infer absorption linewidth effectively, and the analytical expressions for relationships between Lorentzian linewidth and the separations of first harmonic peak-to-valley and second harmonic zero-crossing were deduced. The transition of CO_2 centered at 4991.25 cm^(-1) was used to verify the optimized spectral fitting method and the analytical expressions. Results showed that the optimized spectra fitting method was able to infer absorption accurately and compute more than 10 times faster than the commonly used numerical fitting procedure. The second harmonic zero-crossing separation method calculated an even 6 orders faster than the spectra fitting without losing any accuracy for Lorentzian dominated cases. Additionally, linewidth calculated through second harmonic zero-crossing was preferred for much smaller error than the first harmonic peak-to-valley separation method. The presented analytical expressions can also be used in on-line optical sensing applications, electron paramagnetic resonance, and further theoretical characterization of absorption lineshape.
基金supported by the National Natural Science Foundation of China( 41004020)the Director Foundation of Institute of Seismology,CEA(IS200926044)
文摘Baseline offset in digital strong-motion acceleration record and initial velocity can produce unrealistic results for ground velocity and displacement derived from the acceleration by integration. A new method is proposed for the baseline correction and initial velocity calculation. It is based on linear least-squares fitting of the pre-event portion of velocity derived from the uncorrected acceleration data. Compared with the conventional method,which is based on removing the mean values of the pre-event portions of the acceleration and velocity traces,this method has clearer physical meaning and better stability.
基金Financial support from the German Research Foundation(SFB917)is acknowledgedOpen Access funding enabled and organized by Projekt DEAL.
文摘Despite the wide availability and usage of Gatan’s DigitalMicrograph software in the electron microscopy community for image recording and analysis, nonlinear least-squares fitting in DigitalMicrograph is less straightforward. This work presents a ready-to-use tool, the DMPFIT software package, written in DigitalMicrograph script and C++ language, for nonlinear least-squares fitting of the intensity distribution of atomic columns in atomic-resolution transmission electron microscopy (TEM) images with a general two-dimensional (2D) Gaussian model. Applications of the DMPFIT software are demonstrated both in atomic-resolution conventional coherent TEM (CTEM) images recorded by the negative spherical aberration imaging technique and in high angle annular dark field (HAADF) scanning TEM (STEM) images. The implemented peak-finding algorithm based on the periodicity of 2D lattices enables reliable and convenient atomic-scale metrology as well as intuitive presentation of the resolved atomic structures.
文摘The paper's aim is how to forecast data with variations involving at times series data to get the best forecasting model. When researchers are going to forecast data with variations involving at times series data (i.e., secular trends, cyclical variations, seasonal effects, and stochastic variations), they believe the best forecasting model is the one which realistically considers the underlying causal factors in a situational relationship and therefore has the best "track records" in generating data. Paper's models can be adjusted for variations in related a time series which processes a great deal of randomness, to improve the accuracy of the financial forecasts. Because of Na'fve forecasting models are based on an extrapolation of past values for future. These models may be adjusted for seasonal, secular, and cyclical trends in related data. When a data series processes a great deal of randomness, smoothing techniques, such as moving averages and exponential smoothing, may improve the accuracy of the financial forecasts. But neither Na'fve models nor smoothing techniques are capable of identifying major future changes in the direction of a situational data series. Hereby, nonlinear techniques, like direct and sequential search approaches, overcome those shortcomings can be used. The methodology which we have used is based on inferential analysis. To build the models to identify the major future changes in the direction of a situational data series, a comparative model building is applied. Hereby, the paper suggests using some of the nonlinear techniques, like direct and sequential search approaches, to reduce the technical shortcomings. The final result of the paper is to manipulate, to prepare, and to integrate heuristic non-linear searching methods to serve calculating adjusted factors to produce the best forecast data.