A method of multiple outputs least squares support vector regression (LS-SVR) was developed and described in detail, with the radial basis function (RBF) as the kernel function. The method was applied to predict t...A method of multiple outputs least squares support vector regression (LS-SVR) was developed and described in detail, with the radial basis function (RBF) as the kernel function. The method was applied to predict the future state of the power-shift steering transmission (PSST). A prediction model of PSST was gotten with multiple outputs LS-SVR. The model performance was greatly influenced by the penalty parameter γ and kernel parameter σ2 which were optimized using cross validation method. The training and prediction of the model were done with spectrometric oil analysis data. The predictive and actual values were compared and a fault in the second PSST was found. The research proved that this method had good accuracy in PSST fault prediction, and any possible problem in PSST could be found through a comparative analysis.展开更多
Recently, fault or health condition prediction of complex systems becomes an interesting research topic. However, it is difficult to establish precise physical model for complex systems, and the time series properties...Recently, fault or health condition prediction of complex systems becomes an interesting research topic. However, it is difficult to establish precise physical model for complex systems, and the time series properties are often necessary to be incorporated for the prediction in practice. Currently, the LS-SVR is widely adopted for prediction of systems with time series data. In this paper, in order to improve the prediction accuracy, accumulated generating operation (AGO) is carried out to improve the data quality and regularity of raw time series data based on grey system theory; then, the inverse accumulated generating operation (IAGO) is performed to obtain the prediction results. In addition, due to the reason that appropriate kernel function plays an important role in improving the accuracy of prediction through LS-SVR, a modified Gaussian radial basis function (RBF) is proposed. The requirements of distance functions-based kernel functions are satisfied, which ensure fast damping at the place adjacent to the test point and a moderate damping at infinity. The presented model is applied to the analysis of benchmarks. As indicated by the results, the proposed method is an effective prediction one with good precision.展开更多
Health trend prediction has become an effective way to ensure the safe operation of highly reliable systems,and online prediction is always necessary in many real applications.To simultaneously obtain better or accept...Health trend prediction has become an effective way to ensure the safe operation of highly reliable systems,and online prediction is always necessary in many real applications.To simultaneously obtain better or acceptable online prediction accuracy and shorter computing time,we propose a new adaptive online method based on least squares support vector regression(LS-SVR).This method adopts two approaches.One approach is that we delete certain support vectors by judging the linear correlation among the samples to increase the sparseness of the prediction model.This approach can control the loss of useful information in sample data,improve the generalization capability of the prediction model,and reduce the prediction time.The other approach is that we reduce the number of traditional LS-SVR parameters and establish a modified simple prediction model.This approach can reduce the calculation time in the process of adaptive online training.Simulation and a certain electric system application indicate preliminarily that the proposed method is an effective prediction approach for its good prediction accuracy and low computing time.展开更多
A timing decision-making method for predecisional remanufacturing is presented.The method can effectively solve the uncertainty problem of remanufacturing blanks.From the perspective of reliability,this study analyzes...A timing decision-making method for predecisional remanufacturing is presented.The method can effectively solve the uncertainty problem of remanufacturing blanks.From the perspective of reliability,this study analyzes the timing decision-making interval for predecisional remanufacturing of mechanical products during the service period and constructs an optimal timing model based on energy consumption and cost.The mapping relationships between time and energy consumption are predicted by using the characteristic values of performance degradation of products combined with the least squares support vector regression algorithm.Application of game theory reveals that when the energy consumption and cost are comprehensively optimal,this moment is the best time for predecisional remanufacturing.Used engine blades are utilized as an example to demonstrate the validity and effectiveness of the proposed method.展开更多
Dry rubber content(DRC)is an important factor to be considered in evaluating the quality of cup lump rubber.The DRC analysis requires prolonged laboratory validation.To develop fast and effective DRC determination met...Dry rubber content(DRC)is an important factor to be considered in evaluating the quality of cup lump rubber.The DRC analysis requires prolonged laboratory validation.To develop fast and effective DRC determination methods,this study proposed methods to evaluate the DRC of cup lump rubber using different spectroscopic measurement approaches.This involved a complete fundamental analysis leading to an efficient measurement method based on either point-based measurement using NIR reflectance spectrometer or area-based measurement using hyperspectral imaging.A dataset was prepared that 120 samples were randomly divided into a calibration set of 90 samples and a validation set of 30 samples.To obtain an average spectrum to represent a cup lump rubber sample,the spectral data were collected by locating and scanning for point-based and area-based measurement,respectively.The spectral data were calibrated using partial least squares regression(PLSR)and the least-squares support vector machine(LS-SVM)methods against the reference values.The experiments showed that the area-based measurement approach with both algorithms performed outstandingly in predicting the DRC of cup lump rubber and was clearly better than the point-based measurement approach.The best predictions of PLSR represented by the coefficient of determination(R2),the root mean square error of prediction(RMSEP)and the residual predictive deviation(RPD)were 0.99,0.72%and 15.17,while the best prediction of LS-SVM were 0.99,0.64%and 16.83,respectively.In summary,the area-based measurement based on the LS-SVM prediction model provided a highly accurate estimate of the DRC of cup lump rubber.展开更多
基金Supported by the Ministerial Level Advanced Research Foundation(3031030)the"111"Project(B08043)
文摘A method of multiple outputs least squares support vector regression (LS-SVR) was developed and described in detail, with the radial basis function (RBF) as the kernel function. The method was applied to predict the future state of the power-shift steering transmission (PSST). A prediction model of PSST was gotten with multiple outputs LS-SVR. The model performance was greatly influenced by the penalty parameter γ and kernel parameter σ2 which were optimized using cross validation method. The training and prediction of the model were done with spectrometric oil analysis data. The predictive and actual values were compared and a fault in the second PSST was found. The research proved that this method had good accuracy in PSST fault prediction, and any possible problem in PSST could be found through a comparative analysis.
基金supported by National Natural Science Foundation(NNSF)of China under Grant No.61371024Aviation Science Fund of China under Grant No.2013ZD53051+1 种基金Aerospace Technology Support Fund of Chinathe Industry-Academy-Research Project of AVIC(cxy2013XGD14)
文摘Recently, fault or health condition prediction of complex systems becomes an interesting research topic. However, it is difficult to establish precise physical model for complex systems, and the time series properties are often necessary to be incorporated for the prediction in practice. Currently, the LS-SVR is widely adopted for prediction of systems with time series data. In this paper, in order to improve the prediction accuracy, accumulated generating operation (AGO) is carried out to improve the data quality and regularity of raw time series data based on grey system theory; then, the inverse accumulated generating operation (IAGO) is performed to obtain the prediction results. In addition, due to the reason that appropriate kernel function plays an important role in improving the accuracy of prediction through LS-SVR, a modified Gaussian radial basis function (RBF) is proposed. The requirements of distance functions-based kernel functions are satisfied, which ensure fast damping at the place adjacent to the test point and a moderate damping at infinity. The presented model is applied to the analysis of benchmarks. As indicated by the results, the proposed method is an effective prediction one with good precision.
基金Project supported by the National Basic Research Program (973) of Chinathe National Natural Science Foundation of China (Nos.61001023 and 61101004)+1 种基金the Basic Research Program of Shaanxi Province,China (No. 2010JQ8005)the Aviation Science Fund of China (No. 2010ZD53039)
文摘Health trend prediction has become an effective way to ensure the safe operation of highly reliable systems,and online prediction is always necessary in many real applications.To simultaneously obtain better or acceptable online prediction accuracy and shorter computing time,we propose a new adaptive online method based on least squares support vector regression(LS-SVR).This method adopts two approaches.One approach is that we delete certain support vectors by judging the linear correlation among the samples to increase the sparseness of the prediction model.This approach can control the loss of useful information in sample data,improve the generalization capability of the prediction model,and reduce the prediction time.The other approach is that we reduce the number of traditional LS-SVR parameters and establish a modified simple prediction model.This approach can reduce the calculation time in the process of adaptive online training.Simulation and a certain electric system application indicate preliminarily that the proposed method is an effective prediction approach for its good prediction accuracy and low computing time.
基金This research was sponsored by the National Natural Science Foundation of China(Grant Nos.51605347 and 51775392).
文摘A timing decision-making method for predecisional remanufacturing is presented.The method can effectively solve the uncertainty problem of remanufacturing blanks.From the perspective of reliability,this study analyzes the timing decision-making interval for predecisional remanufacturing of mechanical products during the service period and constructs an optimal timing model based on energy consumption and cost.The mapping relationships between time and energy consumption are predicted by using the characteristic values of performance degradation of products combined with the least squares support vector regression algorithm.Application of game theory reveals that when the energy consumption and cost are comprehensively optimal,this moment is the best time for predecisional remanufacturing.Used engine blades are utilized as an example to demonstrate the validity and effectiveness of the proposed method.
基金The authors acknowledge the financial support and a research grant provided by the Thailand Research Fund (TRF) and the Faculty of Engineering at Kamphaeng Saen, Kasetsart University, Thailand.
文摘Dry rubber content(DRC)is an important factor to be considered in evaluating the quality of cup lump rubber.The DRC analysis requires prolonged laboratory validation.To develop fast and effective DRC determination methods,this study proposed methods to evaluate the DRC of cup lump rubber using different spectroscopic measurement approaches.This involved a complete fundamental analysis leading to an efficient measurement method based on either point-based measurement using NIR reflectance spectrometer or area-based measurement using hyperspectral imaging.A dataset was prepared that 120 samples were randomly divided into a calibration set of 90 samples and a validation set of 30 samples.To obtain an average spectrum to represent a cup lump rubber sample,the spectral data were collected by locating and scanning for point-based and area-based measurement,respectively.The spectral data were calibrated using partial least squares regression(PLSR)and the least-squares support vector machine(LS-SVM)methods against the reference values.The experiments showed that the area-based measurement approach with both algorithms performed outstandingly in predicting the DRC of cup lump rubber and was clearly better than the point-based measurement approach.The best predictions of PLSR represented by the coefficient of determination(R2),the root mean square error of prediction(RMSEP)and the residual predictive deviation(RPD)were 0.99,0.72%and 15.17,while the best prediction of LS-SVM were 0.99,0.64%and 16.83,respectively.In summary,the area-based measurement based on the LS-SVM prediction model provided a highly accurate estimate of the DRC of cup lump rubber.