Geo-data is a foundation for the prediction and assessment of ore resources, so managing and making full use of those data, including geography database, geology database, mineral deposits database, aeromagnetics data...Geo-data is a foundation for the prediction and assessment of ore resources, so managing and making full use of those data, including geography database, geology database, mineral deposits database, aeromagnetics database, gravity database, geochemistry database and remote sensing database, is very significant. We developed national important mining zone database (NIMZDB) to manage 14 national important mining zone databases to support a new round prediction of ore deposit. We found that attention should be paid to the following issues: ① data accuracy: integrity, logic consistency, attribute, spatial and time accuracy; ② management of both attribute and spatial data in the same system;③ transforming data between MapGIS and ArcGIS; ④ data sharing and security; ⑤ data searches that can query both attribute and spatial data. Accuracy of input data is guaranteed and the search, analysis and translation of data between MapGIS and ArcGIS has been made convenient via the development of a checking data module and a managing data module based on MapGIS and ArcGIS. Using AreSDE, we based data sharing on a client/server system, and attribute and spatial data are also managed in the same system.展开更多
研究多元化种植模式下,不同前茬秸秆还田与水氮管理对水稻产量形成、干物质积累分配及氮素吸收利用的影响。2018—2019年以杂交稻F优498为材料,采用三因素裂裂区设计,主区设置油菜-水稻(Py)、小麦-水稻(Px)、青菜-水稻(Pq)3种种植模式...研究多元化种植模式下,不同前茬秸秆还田与水氮管理对水稻产量形成、干物质积累分配及氮素吸收利用的影响。2018—2019年以杂交稻F优498为材料,采用三因素裂裂区设计,主区设置油菜-水稻(Py)、小麦-水稻(Px)、青菜-水稻(Pq)3种种植模式秸秆还田,裂区设置常规淹水灌溉(W_(0))和干湿交替灌溉(W_(1))2种水分管理方式,裂裂区设置不施氮处理(N_(0))、常规施氮处理(N_(1))、精量减氮处理(N_(2))3个施氮水平,分析测定了拔节期、齐穗期和成熟期不同处理下秸秆还田的腐解率、氮素释放率、水稻各器官的干物质积累分配、植株氮素吸收利用以及籽粒产量。结果表明,Py的平均产量分别较Px、Pq增加2.55%、13.99%,主要原因是其有效穗数和千粒重较高;Py可促进各营养器官干物质和氮素积累,有利于干物质分配、提高茎鞘氮素贡献率和氮肥利用率,Py各时期的平均干物质积累总量、氮素积累总量分别比Px和Pq增加5.25%、7.48%和14.60%、17.30%,Py的氮肥偏生产力较Pq显著增加24.90%,但Py的秸秆腐解率和氮素释放率较低。3种模式下W1处理的水稻产量分别比W0处理增加5.10%(Py)、1.76%(Px)和4.80%(Pq),W1处理可促进秸秆腐解和氮素释放,促进干物质积累和氮素吸收转运,有利于Py和Px模式下的干物质分配,进而提高氮肥利用率。同一秸秆还田和水分管理下,N2处理可促进秸秆腐解和氮素释放,有利于干物质分配和氮素转运,提高了齐穗期、成熟期茎鞘和叶片氮素积累量,进而提高氮肥利用率,N2处理的产量、干物质积累量较N1处理略有下降,但二者差异不显著。综合考虑分析,油-稻种植模式下,油菜秸秆还田配合干湿交替灌溉与精量减氮(120 kg hm^(-2))有利于干物质积累分配、氮素吸收转运,进而提高氮肥农学利用率、氮肥偏生产力,并可节约20%氮肥投入,实现水稻稳产高效生产。展开更多
Toxic air pollutants(TAPs)are a class of airborne chemicals known or suspected to cause serious health issues.This study,applying positive matrix factorization and inhalation unit risk estimates of TAPs,quantifies the...Toxic air pollutants(TAPs)are a class of airborne chemicals known or suspected to cause serious health issues.This study,applying positive matrix factorization and inhalation unit risk estimates of TAPs,quantifies the changes in significant sources contributing to inhalation cancer risks(ICRs)from 2000 to 2020 in Hong Kong,China.Total ICR decreased from 1701 to 451 cases per million between 2000−2004 and 2016−2020,largely attributed to the reduction in diesel particulate matter(DPM),gasoline and solvent use-related volatile organic compounds(VOCs),and coal/biomass combustion-related polycyclic aromatic hydrocarbons and metal(loid)s.The regional contribution of VOCs associated with industrial and halogenated solvent sources increased substantially,representing the largest non-DPM ICR contributor(37%)in 2016−2020,stressing the need for a more comprehensive risk evaluation across the fast-growing and densely populated Greater Bay Area(GBA).ICRs in Hong Kong and the GBA will likely remain over 100 cases per million by 2050.The contributions to ozone formation potential of VOC/carbonyl sources were quantified,which show a notable shift from being solvent/gasoline-dominant in 2000−2004 to being more evenly shared by various sources in 2016−2020.Establishing a similar TAP monitoring network in the GBA is anticipated to provide the monitoring data needed to facilitate the development of more informed air quality management strategies.展开更多
基金This paper is financially supported by the National I mportant MiningZone Database ( No .200210000004)Prediction and Assessment ofMineral Resources and Social Service (No .1212010331402) .
文摘Geo-data is a foundation for the prediction and assessment of ore resources, so managing and making full use of those data, including geography database, geology database, mineral deposits database, aeromagnetics database, gravity database, geochemistry database and remote sensing database, is very significant. We developed national important mining zone database (NIMZDB) to manage 14 national important mining zone databases to support a new round prediction of ore deposit. We found that attention should be paid to the following issues: ① data accuracy: integrity, logic consistency, attribute, spatial and time accuracy; ② management of both attribute and spatial data in the same system;③ transforming data between MapGIS and ArcGIS; ④ data sharing and security; ⑤ data searches that can query both attribute and spatial data. Accuracy of input data is guaranteed and the search, analysis and translation of data between MapGIS and ArcGIS has been made convenient via the development of a checking data module and a managing data module based on MapGIS and ArcGIS. Using AreSDE, we based data sharing on a client/server system, and attribute and spatial data are also managed in the same system.
文摘研究多元化种植模式下,不同前茬秸秆还田与水氮管理对水稻产量形成、干物质积累分配及氮素吸收利用的影响。2018—2019年以杂交稻F优498为材料,采用三因素裂裂区设计,主区设置油菜-水稻(Py)、小麦-水稻(Px)、青菜-水稻(Pq)3种种植模式秸秆还田,裂区设置常规淹水灌溉(W_(0))和干湿交替灌溉(W_(1))2种水分管理方式,裂裂区设置不施氮处理(N_(0))、常规施氮处理(N_(1))、精量减氮处理(N_(2))3个施氮水平,分析测定了拔节期、齐穗期和成熟期不同处理下秸秆还田的腐解率、氮素释放率、水稻各器官的干物质积累分配、植株氮素吸收利用以及籽粒产量。结果表明,Py的平均产量分别较Px、Pq增加2.55%、13.99%,主要原因是其有效穗数和千粒重较高;Py可促进各营养器官干物质和氮素积累,有利于干物质分配、提高茎鞘氮素贡献率和氮肥利用率,Py各时期的平均干物质积累总量、氮素积累总量分别比Px和Pq增加5.25%、7.48%和14.60%、17.30%,Py的氮肥偏生产力较Pq显著增加24.90%,但Py的秸秆腐解率和氮素释放率较低。3种模式下W1处理的水稻产量分别比W0处理增加5.10%(Py)、1.76%(Px)和4.80%(Pq),W1处理可促进秸秆腐解和氮素释放,促进干物质积累和氮素吸收转运,有利于Py和Px模式下的干物质分配,进而提高氮肥利用率。同一秸秆还田和水分管理下,N2处理可促进秸秆腐解和氮素释放,有利于干物质分配和氮素转运,提高了齐穗期、成熟期茎鞘和叶片氮素积累量,进而提高氮肥利用率,N2处理的产量、干物质积累量较N1处理略有下降,但二者差异不显著。综合考虑分析,油-稻种植模式下,油菜秸秆还田配合干湿交替灌溉与精量减氮(120 kg hm^(-2))有利于干物质积累分配、氮素吸收转运,进而提高氮肥农学利用率、氮肥偏生产力,并可节约20%氮肥投入,实现水稻稳产高效生产。
基金supported by the Hong Kong Environmental Protection Department(Project 20-00424)supported by a fellowship award from the Research Grants Council of the HKSAR,China(HKUST PDFS2223-6S10).
文摘Toxic air pollutants(TAPs)are a class of airborne chemicals known or suspected to cause serious health issues.This study,applying positive matrix factorization and inhalation unit risk estimates of TAPs,quantifies the changes in significant sources contributing to inhalation cancer risks(ICRs)from 2000 to 2020 in Hong Kong,China.Total ICR decreased from 1701 to 451 cases per million between 2000−2004 and 2016−2020,largely attributed to the reduction in diesel particulate matter(DPM),gasoline and solvent use-related volatile organic compounds(VOCs),and coal/biomass combustion-related polycyclic aromatic hydrocarbons and metal(loid)s.The regional contribution of VOCs associated with industrial and halogenated solvent sources increased substantially,representing the largest non-DPM ICR contributor(37%)in 2016−2020,stressing the need for a more comprehensive risk evaluation across the fast-growing and densely populated Greater Bay Area(GBA).ICRs in Hong Kong and the GBA will likely remain over 100 cases per million by 2050.The contributions to ozone formation potential of VOC/carbonyl sources were quantified,which show a notable shift from being solvent/gasoline-dominant in 2000−2004 to being more evenly shared by various sources in 2016−2020.Establishing a similar TAP monitoring network in the GBA is anticipated to provide the monitoring data needed to facilitate the development of more informed air quality management strategies.